Depth optimization for topological quantum circuits

Depth optimization for topological quantum circuits Topological quantum computing (TQC) model is one of the most promising models for quantum computation. A circuit implemented under TQC is optimized by reducing its depth due to special construction requirements in such technology. In this work, we propose a hybrid approach that combines a left-edge greedy heuristic with genetic algorithm (GA) to minimize circuit depth through combined line and gate ordering. In our implementation, GA is used to find line ordering, whereas the left edge is used to reduce circuit depth by taking into consideration overlap constraints imposed by line ordering. Moreover, the proposed algorithm can merge gates together realizing circuit with multi-target gates to provide reduced circuit depth. Experimental results on random benchmark circuits show that the proposed algorithm was able to reduce circuit depth by 42 % on average for CNOT circuits, with additional 5 % savings when multi-target optimization is used. Results on RevLib benchmarks revealed a typical enhancement of 21 % and an additional 11 % when multi-target gates are allowed. Quantum Information Processing Springer Journals

Depth optimization for topological quantum circuits

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial