Depth first search in claw-free graphs

Depth first search in claw-free graphs Optimization problems concerning the vertex degrees of spanning trees of connected graphs play an extremely important role in network design. Minimizing the number of leaves of the spanning trees is NP-hard, since it is a generalization of the problem of finding a hamiltonian path of the graph. Moreover, Lu and Ravi (The power of local optimization: approximation algorithms for maximum-leaf spanning tree (DRAFT), CS-96-05, Department of Computer Science, Brown University, Providence, 1996) showed that this problem does not even have a constant factor approximation, unless $$\hbox {P}=\hbox {NP}$$ P = NP , thus properties that guarantee the existence of a spanning tree with a small number of leaves are of special importance. In this paper we are dealing with finding spanning trees with few leaves in claw-free graphs. We prove that all claw-free graphs have a DFS-tree, such that the leaves different from the root have no common neighbour, generalizing a theorem of Kano et al. (Ars Combin 103:137–154, 2012). The result also implies a strengthening of a result of Ainouche et al. (Ars Combin 29C:110–121, 1990). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimization Letters Springer Journals

Depth first search in claw-free graphs

Loading next page...
 
/lp/springer_journal/depth-first-search-in-claw-free-graphs-P0B1ydUDG0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Mathematics; Optimization; Operations Research/Decision Theory; Computational Intelligence; Numerical and Computational Physics, Simulation
ISSN
1862-4472
eISSN
1862-4480
D.O.I.
10.1007/s11590-017-1211-0
Publisher site
See Article on Publisher Site

Abstract

Optimization problems concerning the vertex degrees of spanning trees of connected graphs play an extremely important role in network design. Minimizing the number of leaves of the spanning trees is NP-hard, since it is a generalization of the problem of finding a hamiltonian path of the graph. Moreover, Lu and Ravi (The power of local optimization: approximation algorithms for maximum-leaf spanning tree (DRAFT), CS-96-05, Department of Computer Science, Brown University, Providence, 1996) showed that this problem does not even have a constant factor approximation, unless $$\hbox {P}=\hbox {NP}$$ P = NP , thus properties that guarantee the existence of a spanning tree with a small number of leaves are of special importance. In this paper we are dealing with finding spanning trees with few leaves in claw-free graphs. We prove that all claw-free graphs have a DFS-tree, such that the leaves different from the root have no common neighbour, generalizing a theorem of Kano et al. (Ars Combin 103:137–154, 2012). The result also implies a strengthening of a result of Ainouche et al. (Ars Combin 29C:110–121, 1990).

Journal

Optimization LettersSpringer Journals

Published: Nov 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off