Depth estimation from single monocular images using deep hybrid network

Depth estimation from single monocular images using deep hybrid network Depth estimation is a significant task in the robotics vision. In this paper, we address the depth estimation from a single monocular image, which is a challenging problem in automated vision systems since a single image alone does not carry any additional measurements. To tackle our main objective, we design a deep hybrid neural network, which is composed of convolutional and recurrent layers (ReNet), where each ReNet layer is composed of the Long Short-Term Memory unit (LSTM), which is famous for the ability to memorize long-range context. In the proposed network, ReNet layers aim to enrich the features representation by directly capturing global context. The effective integration of ReNet and convolutional layers in the common CNN framework allows us to train the hybrid network in the end-to-end fashion. Experimental evaluation on the benchmarks dataset demonstrated, that hybrid network achieves the state-of-the-art results without any post-processing steps. Moreover, the composition of recurrent and convolutional layers provide more satisfying results. Multimedia Tools and Applications Springer Journals

Depth estimation from single monocular images using deep hybrid network

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial