Depth estimation for ranking query optimization

Depth estimation for ranking query optimization A relational ranking query uses a scoring function to limit the results of a conventional query to a small number of the most relevant answers. The increasing popularity of this query paradigm has led to the introduction of specialized rank join operators that integrate the selection of top tuples with join processing. These operators access just “enough” of the input in order to generate just “enough” output and can offer significant speed-ups for query evaluation. The number of input tuples that an operator accesses is called the input depth of the operator, and this is the driving cost factor in rank join processing. This introduces the important problem of depth estimation , which is crucial for the costing of rank join operators during query compilation and thus for their integration in optimized physical plans. We introduce an estimation methodology, termed deep , for approximating the input depths of rank join operators in a physical execution plan. At the core of deep lies a general, principled framework that formalizes depth computation in terms of the joint distribution of scores in the base tables. This framework results in a systematic estimation methodology that takes the characteristics of the data directly into account and thus enables more accurate estimates. We develop novel estimation algorithms that provide an efficient realization of the formal deep framework, and describe their integration on top of the statistics module of an existing query optimizer. We validate the performance of deep with an extensive experimental study on data sets of varying characteristics. The results verify the effectiveness of deep as an estimation method and demonstrate its advantages over previously proposed techniques. The VLDB Journal Springer Journals

Depth estimation for ranking query optimization

Loading next page...
Copyright © 2009 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial