Depth estimation for ranking query optimization

Depth estimation for ranking query optimization A relational ranking query uses a scoring function to limit the results of a conventional query to a small number of the most relevant answers. The increasing popularity of this query paradigm has led to the introduction of specialized rank join operators that integrate the selection of top tuples with join processing. These operators access just “enough” of the input in order to generate just “enough” output and can offer significant speed-ups for query evaluation. The number of input tuples that an operator accesses is called the input depth of the operator, and this is the driving cost factor in rank join processing. This introduces the important problem of depth estimation , which is crucial for the costing of rank join operators during query compilation and thus for their integration in optimized physical plans. We introduce an estimation methodology, termed deep , for approximating the input depths of rank join operators in a physical execution plan. At the core of deep lies a general, principled framework that formalizes depth computation in terms of the joint distribution of scores in the base tables. This framework results in a systematic estimation methodology that takes the characteristics of the data directly into account and thus enables more accurate estimates. We develop novel estimation algorithms that provide an efficient realization of the formal deep framework, and describe their integration on top of the statistics module of an existing query optimizer. We validate the performance of deep with an extensive experimental study on data sets of varying characteristics. The results verify the effectiveness of deep as an estimation method and demonstrate its advantages over previously proposed techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Depth estimation for ranking query optimization

Loading next page...
 
/lp/springer_journal/depth-estimation-for-ranking-query-optimization-M01S3oIasu
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0124-z
Publisher site
See Article on Publisher Site

Abstract

A relational ranking query uses a scoring function to limit the results of a conventional query to a small number of the most relevant answers. The increasing popularity of this query paradigm has led to the introduction of specialized rank join operators that integrate the selection of top tuples with join processing. These operators access just “enough” of the input in order to generate just “enough” output and can offer significant speed-ups for query evaluation. The number of input tuples that an operator accesses is called the input depth of the operator, and this is the driving cost factor in rank join processing. This introduces the important problem of depth estimation , which is crucial for the costing of rank join operators during query compilation and thus for their integration in optimized physical plans. We introduce an estimation methodology, termed deep , for approximating the input depths of rank join operators in a physical execution plan. At the core of deep lies a general, principled framework that formalizes depth computation in terms of the joint distribution of scores in the base tables. This framework results in a systematic estimation methodology that takes the characteristics of the data directly into account and thus enables more accurate estimates. We develop novel estimation algorithms that provide an efficient realization of the formal deep framework, and describe their integration on top of the statistics module of an existing query optimizer. We validate the performance of deep with an extensive experimental study on data sets of varying characteristics. The results verify the effectiveness of deep as an estimation method and demonstrate its advantages over previously proposed techniques.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2009

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off