Dependence of the wake on inclination of a stationary cylinder

Dependence of the wake on inclination of a stationary cylinder Three-dimensional vorticity in the wake of an inclined stationary circular cylinder was measured simultaneously using a multi-hot wire vorticity probe over a streamwise range of x/d = 10–40. The study aimed to examine the dependence of the wake characteristics on cylinder inclination angle α (=0°–45°). The validity of the independence principle (IP) for vortex shedding was also examined. It was found that the spanwise mean velocity $$ \overline{W} , $$ which represents the three-dimensionality of the wake flow, increases monotonically with α. The root-mean-square (rms) values of the streamwise (u) and spanwise (w) velocities and the three vorticity components decrease significantly with the increase of α, whereas the transverse velocity (v) does not follow the same trend. The vortex shedding frequency decreases with the increase of α. The Strouhal number (St N), obtained by using the velocity component normal to the cylinder axis, remains approximately a constant within the experimental uncertainty (±8%) when α is smaller than about 40°. The autocorrelation coefficients ρ u and ρ v of the u and v velocity signals show apparent periodicity for all inclination angles. With increasing α, ρ u and ρ v decrease and approach zero quickly. In contrast, the autocorrelation coefficient ρ w of w increases with α in the near wake, implying an enhanced three-dimensionality of the wake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Dependence of the wake on inclination of a stationary cylinder

Loading next page...
 
/lp/springer_journal/dependence-of-the-wake-on-inclination-of-a-stationary-cylinder-OtOwHuR3nJ
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0625-6
Publisher site
See Article on Publisher Site

Abstract

Three-dimensional vorticity in the wake of an inclined stationary circular cylinder was measured simultaneously using a multi-hot wire vorticity probe over a streamwise range of x/d = 10–40. The study aimed to examine the dependence of the wake characteristics on cylinder inclination angle α (=0°–45°). The validity of the independence principle (IP) for vortex shedding was also examined. It was found that the spanwise mean velocity $$ \overline{W} , $$ which represents the three-dimensionality of the wake flow, increases monotonically with α. The root-mean-square (rms) values of the streamwise (u) and spanwise (w) velocities and the three vorticity components decrease significantly with the increase of α, whereas the transverse velocity (v) does not follow the same trend. The vortex shedding frequency decreases with the increase of α. The Strouhal number (St N), obtained by using the velocity component normal to the cylinder axis, remains approximately a constant within the experimental uncertainty (±8%) when α is smaller than about 40°. The autocorrelation coefficients ρ u and ρ v of the u and v velocity signals show apparent periodicity for all inclination angles. With increasing α, ρ u and ρ v decrease and approach zero quickly. In contrast, the autocorrelation coefficient ρ w of w increases with α in the near wake, implying an enhanced three-dimensionality of the wake.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off