Dependence of chlorophyll P700 redox transients during the induction period on the transmembrane distribution of protons in chloroplasts of pea leaves

Dependence of chlorophyll P700 redox transients during the induction period on the transmembrane... Differential absorbance measurements and fluorometry were applied to examine the impact of dicyclohexylcarbodiimide (DCCD, an inhibitor of H+ conductance in thylakoid membranes) and nigericin (a K+/H+ antiporter) on photoinduced redox state transients of chlorophyll P700 and the induction curves of chlorophyll fluorescence in pea (Pisum sativum L., cv. Premium) leaves. The treatment of leaves with DCCD strongly modified the kinetics of P700+ absorbance changes (ΔA 810) by promoting rapid photooxidation of P700. These characteristic changes in ΔA 810 induction kinetics and P700+ accumulation did not appear when the leaves were treated with DCCD in the presence of nigericin. In addition to opposite modifications of ΔA 810 kinetics evoked by permeability-modifying agents, the fluorescence induction curves differed conspicuously depending on leaf incubation in DCCD solutions with or without nigericin. The observed modifications of fluorescence induction curves and ΔA 810 indicate that DCCD suppresses electron transport from photosystem II (PSII) to P700, whereas this inhibition is removed by nigericin. The results suggest that slowing down of the electron transport rate in the presence of DCCD was caused by elevation of ΔpH in thylakoids. The prevention of pH gradient formation in the presence of protonophore lowered also the steady-state P700+ level in far-red irradiated leaves and accelerated the subsequent dark reduction of P700. These findings indicate that PSI-driven cyclic electron flow is accelerated after the removal of the pH gradient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Dependence of chlorophyll P700 redox transients during the induction period on the transmembrane distribution of protons in chloroplasts of pea leaves

Loading next page...
 
/lp/springer_journal/dependence-of-chlorophyll-p700-redox-transients-during-the-induction-w1IcVXcrTM
Publisher
Springer Journals
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710010036
Publisher site
See Article on Publisher Site

Abstract

Differential absorbance measurements and fluorometry were applied to examine the impact of dicyclohexylcarbodiimide (DCCD, an inhibitor of H+ conductance in thylakoid membranes) and nigericin (a K+/H+ antiporter) on photoinduced redox state transients of chlorophyll P700 and the induction curves of chlorophyll fluorescence in pea (Pisum sativum L., cv. Premium) leaves. The treatment of leaves with DCCD strongly modified the kinetics of P700+ absorbance changes (ΔA 810) by promoting rapid photooxidation of P700. These characteristic changes in ΔA 810 induction kinetics and P700+ accumulation did not appear when the leaves were treated with DCCD in the presence of nigericin. In addition to opposite modifications of ΔA 810 kinetics evoked by permeability-modifying agents, the fluorescence induction curves differed conspicuously depending on leaf incubation in DCCD solutions with or without nigericin. The observed modifications of fluorescence induction curves and ΔA 810 indicate that DCCD suppresses electron transport from photosystem II (PSII) to P700, whereas this inhibition is removed by nigericin. The results suggest that slowing down of the electron transport rate in the presence of DCCD was caused by elevation of ΔpH in thylakoids. The prevention of pH gradient formation in the presence of protonophore lowered also the steady-state P700+ level in far-red irradiated leaves and accelerated the subsequent dark reduction of P700. These findings indicate that PSI-driven cyclic electron flow is accelerated after the removal of the pH gradient.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 12, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off