Dense subgraph maintenance under streaming edge weight updates for real-time story identification

Dense subgraph maintenance under streaming edge weight updates for real-time story identification Recent years have witnessed an unprecedented proliferation of social media. People around the globe author, everyday, millions of blog posts, social network status updates, etc. This rich stream of information can be used to identify, on an ongoing basis, emerging stories, and events that capture popular attention. Stories can be identified via groups of tightly coupled real-world entities, namely the people, locations, products, etc, that are involved in the story. The sheer scale and rapid evolution of the data involved necessitate highly efficient techniques for identifying important stories at every point of time. The main challenge in real-time story identification is the maintenance of dense subgraphs (corresponding to groups of tightly coupled entities) under streaming edge weight updates (resulting from a stream of user-generated content). This is the first work to study the efficient maintenance of dense subgraphs under such streaming edge weight updates. For a wide range of definitions of density, we derive theoretical results regarding the magnitude of change that a single edge weight update can cause. Based on these, we propose a novel algorithm, DynDens , which outperforms adaptations of existing techniques to this setting and yields meaningful, intuitive results. Our approach is validated by a thorough experimental evaluation on large-scale real and synthetic datasets. The VLDB Journal Springer Journals

Dense subgraph maintenance under streaming edge weight updates for real-time story identification

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial