Dense subgraph maintenance under streaming edge weight updates for real-time story identification

Dense subgraph maintenance under streaming edge weight updates for real-time story identification Recent years have witnessed an unprecedented proliferation of social media. People around the globe author, everyday, millions of blog posts, social network status updates, etc. This rich stream of information can be used to identify, on an ongoing basis, emerging stories, and events that capture popular attention. Stories can be identified via groups of tightly coupled real-world entities, namely the people, locations, products, etc, that are involved in the story. The sheer scale and rapid evolution of the data involved necessitate highly efficient techniques for identifying important stories at every point of time. The main challenge in real-time story identification is the maintenance of dense subgraphs (corresponding to groups of tightly coupled entities) under streaming edge weight updates (resulting from a stream of user-generated content). This is the first work to study the efficient maintenance of dense subgraphs under such streaming edge weight updates. For a wide range of definitions of density, we derive theoretical results regarding the magnitude of change that a single edge weight update can cause. Based on these, we propose a novel algorithm, DynDens , which outperforms adaptations of existing techniques to this setting and yields meaningful, intuitive results. Our approach is validated by a thorough experimental evaluation on large-scale real and synthetic datasets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Dense subgraph maintenance under streaming edge weight updates for real-time story identification

Loading next page...
 
/lp/springer_journal/dense-subgraph-maintenance-under-streaming-edge-weight-updates-for-5NZVAj3SoJ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0340-z
Publisher site
See Article on Publisher Site

Abstract

Recent years have witnessed an unprecedented proliferation of social media. People around the globe author, everyday, millions of blog posts, social network status updates, etc. This rich stream of information can be used to identify, on an ongoing basis, emerging stories, and events that capture popular attention. Stories can be identified via groups of tightly coupled real-world entities, namely the people, locations, products, etc, that are involved in the story. The sheer scale and rapid evolution of the data involved necessitate highly efficient techniques for identifying important stories at every point of time. The main challenge in real-time story identification is the maintenance of dense subgraphs (corresponding to groups of tightly coupled entities) under streaming edge weight updates (resulting from a stream of user-generated content). This is the first work to study the efficient maintenance of dense subgraphs under such streaming edge weight updates. For a wide range of definitions of density, we derive theoretical results regarding the magnitude of change that a single edge weight update can cause. Based on these, we propose a novel algorithm, DynDens , which outperforms adaptations of existing techniques to this setting and yields meaningful, intuitive results. Our approach is validated by a thorough experimental evaluation on large-scale real and synthetic datasets.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off