Dense 3D facial reconstruction from a single depth image in unconstrained environment

Dense 3D facial reconstruction from a single depth image in unconstrained environment With the increasing demands of applications in virtual reality such as 3D films, virtual human–machine interactions and virtual agents, the analysis of 3D human face is considered to be more and more important as a fundamental step in these tasks. Due to information provided by the additional dimension, 3D facial reconstruction enables aforementioned tasks to be achieved with higher accuracy than those based on 2D facial analysis. The denser the 3D facial model is, the more information it could provide. However, most existing dense 3D facial reconstruction methods require complicated processing and high system cost. To this end, this paper presents a novel method that simplifies the process of dense 3D facial reconstruction by employing only one frame of depth data obtained with an off-the-shelf RGB-D sensor. The proposed method is composed of two main stages: (a) the acquisition of the initial 3D facial point cloud with automatically 3D facial region cropping, and (b) the generating of the dense facial point cloud with RBF-based adaptive 3D point interpolation. Experiments reported in this paper demonstrate the competitive results with real-world data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Virtual Reality Springer Journals

Dense 3D facial reconstruction from a single depth image in unconstrained environment

Loading next page...
 
/lp/springer_journal/dense-3d-facial-reconstruction-from-a-single-depth-image-in-ESid1ItoVr
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Computer Graphics; Computing Methodologies; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision; User Interfaces and Human Computer Interaction
ISSN
1359-4338
eISSN
1434-9957
D.O.I.
10.1007/s10055-017-0311-6
Publisher site
See Article on Publisher Site

Abstract

With the increasing demands of applications in virtual reality such as 3D films, virtual human–machine interactions and virtual agents, the analysis of 3D human face is considered to be more and more important as a fundamental step in these tasks. Due to information provided by the additional dimension, 3D facial reconstruction enables aforementioned tasks to be achieved with higher accuracy than those based on 2D facial analysis. The denser the 3D facial model is, the more information it could provide. However, most existing dense 3D facial reconstruction methods require complicated processing and high system cost. To this end, this paper presents a novel method that simplifies the process of dense 3D facial reconstruction by employing only one frame of depth data obtained with an off-the-shelf RGB-D sensor. The proposed method is composed of two main stages: (a) the acquisition of the initial 3D facial point cloud with automatically 3D facial region cropping, and (b) the generating of the dense facial point cloud with RBF-based adaptive 3D point interpolation. Experiments reported in this paper demonstrate the competitive results with real-world data.

Journal

Virtual RealitySpringer Journals

Published: Apr 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off