Denoising of natural images through robust wavelet thresholding and genetic programming

Denoising of natural images through robust wavelet thresholding and genetic programming Digital images play an essential role in analysis tasks that can be applied in various knowledge domains, including medicine, meteorology, geology, and biology. Such images can be degraded by noise during the process of acquisition, transmission, storage, or compression. The use of local filters in image restoration may generate artifacts when these filters are not well adapted to the image content as a result of the heuristic optimization of local filters. Denoising methods based on learning procedure are more capable than parametric filters for addressing the conflicts between noise suppression and artifact reduction. In this study, we present a nonlinear filtering method based on a two-step switching scheme to remove both salt-and-pepper and additive white Gaussian noises. In the switching scheme, two cascaded detectors are used to detect noise, and two corresponding estimators are employed to effectively and efficiently filter the noise in an image. In the process of training, a method according to patch clustering is utilized, and genetic programming (GP) is subsequently applied to determine the optimum filter (wavelet-domain filter) for each individual cluster, while in testing part, the optimum filter trained beforehand by GP is recovered and used on the inputted corrupted patch. This adaptive structure is employed to cope with several noise types. Experimental and comparative analysis results show that the denoising performance of the proposed method is superior to that of existing denoising methods as per both quantitative and qualitative assessments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

Denoising of natural images through robust wavelet thresholding and genetic programming

Loading next page...
 
/lp/springer_journal/denoising-of-natural-images-through-robust-wavelet-thresholding-and-Lhu3Z0ozN5
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
D.O.I.
10.1007/s00371-016-1273-5
Publisher site
See Article on Publisher Site

Abstract

Digital images play an essential role in analysis tasks that can be applied in various knowledge domains, including medicine, meteorology, geology, and biology. Such images can be degraded by noise during the process of acquisition, transmission, storage, or compression. The use of local filters in image restoration may generate artifacts when these filters are not well adapted to the image content as a result of the heuristic optimization of local filters. Denoising methods based on learning procedure are more capable than parametric filters for addressing the conflicts between noise suppression and artifact reduction. In this study, we present a nonlinear filtering method based on a two-step switching scheme to remove both salt-and-pepper and additive white Gaussian noises. In the switching scheme, two cascaded detectors are used to detect noise, and two corresponding estimators are employed to effectively and efficiently filter the noise in an image. In the process of training, a method according to patch clustering is utilized, and genetic programming (GP) is subsequently applied to determine the optimum filter (wavelet-domain filter) for each individual cluster, while in testing part, the optimum filter trained beforehand by GP is recovered and used on the inputted corrupted patch. This adaptive structure is employed to cope with several noise types. Experimental and comparative analysis results show that the denoising performance of the proposed method is superior to that of existing denoising methods as per both quantitative and qualitative assessments.

Journal

The Visual ComputerSpringer Journals

Published: Jun 6, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off