Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its realization under conditions of anaerobic stress

Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its... Electron-microscopic examination of mitochondrial membrane ultrastructure in detached leaves of four-day-old wheat (Triticum aestivum L.) seedlings incubated under conditions of strict anoxia in the presence of exogenous glucose and cycloheximide or in the absence of these compounds revealed a paradoxical phenomenon: in the absence of exogenous glucose and cycloheximide, even a short-term (15–30 min) anaerobiosis resulted in a pathological destruction of mitochondria (swelling and the loss of cristae); however, a longer uninterrupted anaerobiosis (3–4 h) did not induce further mitochondria degradation but, in contrast, resulted in the recovery of their initial ultrastructure. Irreversible mitochondria degradation was observed only during subsequent still longer leaf anaerobic treatment (24–48 h). When, under conditions of strict anoxia, leaves were fed with glucose to stimulate glycolysis and ethanolic fermentation, we did not observe any signs of early destruction of mitochondrial ultrastructure and their swelling. Blockage of anaerobic protein synthesis with cycloheximide resulted in early destruction and subsequent irreversible degradation of mitochondria without any indications of their structural recovery. Based on the results of the experiments, we concluded that cell energy metabolism controlled byboth the presence of utilizable carbohydrates and also by the induction of anaerobic protein synthesis played a key role during early mitochondria destruction under extreme conditions of anaerobic stress, their subsequent recovery, and irreversible degradation during continuous long-term strict anoxia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its realization under conditions of anaerobic stress

Loading next page...
 
/lp/springer_journal/demonstration-of-plant-adaptation-syndrome-in-plants-and-possible-byoMGpgnaD
Publisher
Springer Journals
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706050104
Publisher site
See Article on Publisher Site

Abstract

Electron-microscopic examination of mitochondrial membrane ultrastructure in detached leaves of four-day-old wheat (Triticum aestivum L.) seedlings incubated under conditions of strict anoxia in the presence of exogenous glucose and cycloheximide or in the absence of these compounds revealed a paradoxical phenomenon: in the absence of exogenous glucose and cycloheximide, even a short-term (15–30 min) anaerobiosis resulted in a pathological destruction of mitochondria (swelling and the loss of cristae); however, a longer uninterrupted anaerobiosis (3–4 h) did not induce further mitochondria degradation but, in contrast, resulted in the recovery of their initial ultrastructure. Irreversible mitochondria degradation was observed only during subsequent still longer leaf anaerobic treatment (24–48 h). When, under conditions of strict anoxia, leaves were fed with glucose to stimulate glycolysis and ethanolic fermentation, we did not observe any signs of early destruction of mitochondrial ultrastructure and their swelling. Blockage of anaerobic protein synthesis with cycloheximide resulted in early destruction and subsequent irreversible degradation of mitochondria without any indications of their structural recovery. Based on the results of the experiments, we concluded that cell energy metabolism controlled byboth the presence of utilizable carbohydrates and also by the induction of anaerobic protein synthesis played a key role during early mitochondria destruction under extreme conditions of anaerobic stress, their subsequent recovery, and irreversible degradation during continuous long-term strict anoxia.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 29, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off