Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its realization under conditions of anaerobic stress

Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its... Electron-microscopic examination of mitochondrial membrane ultrastructure in detached leaves of four-day-old wheat (Triticum aestivum L.) seedlings incubated under conditions of strict anoxia in the presence of exogenous glucose and cycloheximide or in the absence of these compounds revealed a paradoxical phenomenon: in the absence of exogenous glucose and cycloheximide, even a short-term (15–30 min) anaerobiosis resulted in a pathological destruction of mitochondria (swelling and the loss of cristae); however, a longer uninterrupted anaerobiosis (3–4 h) did not induce further mitochondria degradation but, in contrast, resulted in the recovery of their initial ultrastructure. Irreversible mitochondria degradation was observed only during subsequent still longer leaf anaerobic treatment (24–48 h). When, under conditions of strict anoxia, leaves were fed with glucose to stimulate glycolysis and ethanolic fermentation, we did not observe any signs of early destruction of mitochondrial ultrastructure and their swelling. Blockage of anaerobic protein synthesis with cycloheximide resulted in early destruction and subsequent irreversible degradation of mitochondria without any indications of their structural recovery. Based on the results of the experiments, we concluded that cell energy metabolism controlled byboth the presence of utilizable carbohydrates and also by the induction of anaerobic protein synthesis played a key role during early mitochondria destruction under extreme conditions of anaerobic stress, their subsequent recovery, and irreversible degradation during continuous long-term strict anoxia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Demonstration of plant adaptation syndrome in plants and possible molecular mechanisms of its realization under conditions of anaerobic stress

Loading next page...
 
/lp/springer_journal/demonstration-of-plant-adaptation-syndrome-in-plants-and-possible-byoMGpgnaD
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706050104
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial