Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian highlands and eastern African mountains

Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical... The distribution of genetic diversity among natural populations is significantly shaped by geographical and environmental heterogeneity. The key objectives of this study were to outline the population genetic structure and to investigate the effects of historical and current factors in shaping the population structure of an endemic tropical tree, Hagenia abyssinica. We used 11 polymorphic microsatellites to estimate genetic variability and evaluate gene flow among natural populations of H. abyssinica. Further, we employed ecological niche modeling approaches, to analyze the demographic history and map potential distributions of H. abyssinica during the Last Glacial Maximum and the present. Significant levels of genetic diversity (H O = 0.477, H E = 0.439) were observed among the sampled locations. High coefficient of genetic differentiation (F ST = 0.32) and considerable genetic variation within the sampled locations (68.01%) were detected. Our results indicated the existence of three genetic groups with limited gene exchange and revealed positive correlations (r = 0.425, P < 0.05) between genetic diversity and geo-graphic distance. The ecological niche modeling (ENM) results support the existence of three distribution zones during the Last Glacial Maximum (LGM), with high probability of occurrence (0.8–1.0), and indicated slight distribution disturbances during and after the LGM. The fundamental patterns of genetic diversity and population structuring of H. abyssinica result from a combination of both environmental and geographical factors, including long-term isolation by distance and characteristic life history of this species. Our ENM results identified three zones that could have served as glacial refugia for this species and lay a foundation for further studies, outlining demographic histories and population structures of Afromontane species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian highlands and eastern African mountains

Loading next page...
 
/lp/springer_journal/demographic-history-and-population-genetic-structure-of-hagenia-MqAJV7H80a
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
D.O.I.
10.1007/s11295-017-1156-6
Publisher site
See Article on Publisher Site

Abstract

The distribution of genetic diversity among natural populations is significantly shaped by geographical and environmental heterogeneity. The key objectives of this study were to outline the population genetic structure and to investigate the effects of historical and current factors in shaping the population structure of an endemic tropical tree, Hagenia abyssinica. We used 11 polymorphic microsatellites to estimate genetic variability and evaluate gene flow among natural populations of H. abyssinica. Further, we employed ecological niche modeling approaches, to analyze the demographic history and map potential distributions of H. abyssinica during the Last Glacial Maximum and the present. Significant levels of genetic diversity (H O = 0.477, H E = 0.439) were observed among the sampled locations. High coefficient of genetic differentiation (F ST = 0.32) and considerable genetic variation within the sampled locations (68.01%) were detected. Our results indicated the existence of three genetic groups with limited gene exchange and revealed positive correlations (r = 0.425, P < 0.05) between genetic diversity and geo-graphic distance. The ecological niche modeling (ENM) results support the existence of three distribution zones during the Last Glacial Maximum (LGM), with high probability of occurrence (0.8–1.0), and indicated slight distribution disturbances during and after the LGM. The fundamental patterns of genetic diversity and population structuring of H. abyssinica result from a combination of both environmental and geographical factors, including long-term isolation by distance and characteristic life history of this species. Our ENM results identified three zones that could have served as glacial refugia for this species and lay a foundation for further studies, outlining demographic histories and population structures of Afromontane species.

Journal

Tree Genetics & GenomesSpringer Journals

Published: Jun 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off