DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion

DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure... In this work, at first a new failure criterion for breakage of brittle particle systems is proposed, which combines the classical Mohr–Coulomb strength criterion with the probabilistic Weibull concept. This failure criterion is especially applicable to particle systems under compression load and accounts for the size-dependence of the material’s strength. Second, the Discrete Element Method (DEM) is implemented for sharp edged particles of convex polyhedral shape. The Mohr–Coulomb–Weibull criterion is integrated into the running DEM procedure to simulate progressive particle cracking and comminution of particle systems. The feasibility of the model was tested with simple uniaxial and triaxial compressive loading states, and the influence of relevant material parameters was studied. As a first application example of the method, an oedometric experiment was simulated, whereby coarse quartzite particles are compressed in a piston-die press. The results show good qualitative agreement with the experimentally observed particle size distribution. Thus, the ability of the suggested approach has been proved to reproduce important features as the size effect and the influence of stress state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Granular Matter Springer Journals

DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion

Loading next page...
 
/lp/springer_journal/dem-simulation-of-polyhedral-particle-cracking-using-a-combined-mohr-dN0zXRZlZz
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Physics; Soft and Granular Matter, Complex Fluids and Microfluidics; Engineering Fluid Dynamics; Materials Science, general; Geoengineering, Foundations, Hydraulics; Industrial Chemistry/Chemical Engineering; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
1434-5021
eISSN
1434-7636
D.O.I.
10.1007/s10035-017-0731-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial