Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel

Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel Characterization of prior austenite grain size is important for understanding the microstructure–property relationships in steels. The prior austenite grain size plays an important role in defining the microstructural scale of low-temperature phases and the mechanical properties (e.g., strength, ductility, fracture toughness, etc.) of steels in the final product form. Moreover, in several failure analyses, the cracks are observed to propagate along the prior austenite grain boundaries (PAGBs). The delineation of PAGBs in steels of new composition can be quite challenging, as the response to a particular etching protocol is very sensitive to the chemical composition of steel. The objective of this study was to establish a methodology to delineate PAGBs in AF9628, a newly developed low-alloy high-performance steel. Several different etchants and etching techniques from the literature were evaluated. These methods were unsuccessful or had limited success in revealing PAGBs in AF9628. However, swab etching with a solution of 100 ml saturated aqueous picric acid and 0.5 g sodium dodecyl benzene sulfonate worked remarkably well for delineating the PAGBs in this steel. This etchant was found to have high selectivity, revealing PAGBs preferentially over packet, block, and sub-block boundaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallography, Microstructure, and Analysis Springer Journals

Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel

Loading next page...
 
/lp/springer_journal/delineation-of-prior-austenite-grain-boundaries-in-a-low-alloy-high-hkr23jeKoC
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
2192-9262
eISSN
2192-9270
D.O.I.
10.1007/s13632-017-0403-4
Publisher site
See Article on Publisher Site

Abstract

Characterization of prior austenite grain size is important for understanding the microstructure–property relationships in steels. The prior austenite grain size plays an important role in defining the microstructural scale of low-temperature phases and the mechanical properties (e.g., strength, ductility, fracture toughness, etc.) of steels in the final product form. Moreover, in several failure analyses, the cracks are observed to propagate along the prior austenite grain boundaries (PAGBs). The delineation of PAGBs in steels of new composition can be quite challenging, as the response to a particular etching protocol is very sensitive to the chemical composition of steel. The objective of this study was to establish a methodology to delineate PAGBs in AF9628, a newly developed low-alloy high-performance steel. Several different etchants and etching techniques from the literature were evaluated. These methods were unsuccessful or had limited success in revealing PAGBs in AF9628. However, swab etching with a solution of 100 ml saturated aqueous picric acid and 0.5 g sodium dodecyl benzene sulfonate worked remarkably well for delineating the PAGBs in this steel. This etchant was found to have high selectivity, revealing PAGBs preferentially over packet, block, and sub-block boundaries.

Journal

Metallography, Microstructure, and AnalysisSpringer Journals

Published: Nov 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off