Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel

Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel Characterization of prior austenite grain size is important for understanding the microstructure–property relationships in steels. The prior austenite grain size plays an important role in defining the microstructural scale of low-temperature phases and the mechanical properties (e.g., strength, ductility, fracture toughness, etc.) of steels in the final product form. Moreover, in several failure analyses, the cracks are observed to propagate along the prior austenite grain boundaries (PAGBs). The delineation of PAGBs in steels of new composition can be quite challenging, as the response to a particular etching protocol is very sensitive to the chemical composition of steel. The objective of this study was to establish a methodology to delineate PAGBs in AF9628, a newly developed low-alloy high-performance steel. Several different etchants and etching techniques from the literature were evaluated. These methods were unsuccessful or had limited success in revealing PAGBs in AF9628. However, swab etching with a solution of 100 ml saturated aqueous picric acid and 0.5 g sodium dodecyl benzene sulfonate worked remarkably well for delineating the PAGBs in this steel. This etchant was found to have high selectivity, revealing PAGBs preferentially over packet, block, and sub-block boundaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metallography, Microstructure, and Analysis Springer Journals

Delineation of Prior Austenite Grain Boundaries in a Low-Alloy High-Performance Steel

Loading next page...
 
/lp/springer_journal/delineation-of-prior-austenite-grain-boundaries-in-a-low-alloy-high-hkr23jeKoC
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC and ASM International
Subject
Materials Science; Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology
ISSN
2192-9262
eISSN
2192-9270
D.O.I.
10.1007/s13632-017-0403-4
Publisher site
See Article on Publisher Site

Abstract

Characterization of prior austenite grain size is important for understanding the microstructure–property relationships in steels. The prior austenite grain size plays an important role in defining the microstructural scale of low-temperature phases and the mechanical properties (e.g., strength, ductility, fracture toughness, etc.) of steels in the final product form. Moreover, in several failure analyses, the cracks are observed to propagate along the prior austenite grain boundaries (PAGBs). The delineation of PAGBs in steels of new composition can be quite challenging, as the response to a particular etching protocol is very sensitive to the chemical composition of steel. The objective of this study was to establish a methodology to delineate PAGBs in AF9628, a newly developed low-alloy high-performance steel. Several different etchants and etching techniques from the literature were evaluated. These methods were unsuccessful or had limited success in revealing PAGBs in AF9628. However, swab etching with a solution of 100 ml saturated aqueous picric acid and 0.5 g sodium dodecyl benzene sulfonate worked remarkably well for delineating the PAGBs in this steel. This etchant was found to have high selectivity, revealing PAGBs preferentially over packet, block, and sub-block boundaries.

Journal

Metallography, Microstructure, and AnalysisSpringer Journals

Published: Nov 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off