Delay-on-Demand: A Signaling Protocol to Reduce Blocking Probability in Optical Burst-Switching Networks

Delay-on-Demand: A Signaling Protocol to Reduce Blocking Probability in Optical Burst-Switching... Optical burst switching (OBS) is emerging as one promising switching paradigm for the next generation optical networks. To support multiple services in burst-switching networks, the OBS paradigm should support some quality-of-service (QoS) provisioning. A major design issue in such networks is to reduce the blocking probability of the bursts arising due to resource contention at the intermediate core router. In this paper, we propose a signaling protocol which we call ‘Delay-on-Demand’ (OBS-DoD), to reduce blocking probability and support QoS in optical burst-switching networks. The proposed scheme guarantees that at least one of the bursts succeeds depending on its priority, propagation delay from the ingress router, and the burst-size when contention occurs at the core router. For this, we use a control packet to delay, in case of a contention, the transmission of bursts at the ingress router. We compare the performance of our proposal, by simulation, with an earlier proposed scheme, and show that the proposed OBS-DoD outperforms the earlier scheme in reducing the blocking probability. For simulation, we generated bursty traffic using an M/Pareto distribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Delay-on-Demand: A Signaling Protocol to Reduce Blocking Probability in Optical Burst-Switching Networks

Loading next page...
 
/lp/springer_journal/delay-on-demand-a-signaling-protocol-to-reduce-blocking-probability-in-No0g5dmtAi
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-005-2488-y
Publisher site
See Article on Publisher Site

Abstract

Optical burst switching (OBS) is emerging as one promising switching paradigm for the next generation optical networks. To support multiple services in burst-switching networks, the OBS paradigm should support some quality-of-service (QoS) provisioning. A major design issue in such networks is to reduce the blocking probability of the bursts arising due to resource contention at the intermediate core router. In this paper, we propose a signaling protocol which we call ‘Delay-on-Demand’ (OBS-DoD), to reduce blocking probability and support QoS in optical burst-switching networks. The proposed scheme guarantees that at least one of the bursts succeeds depending on its priority, propagation delay from the ingress router, and the burst-size when contention occurs at the core router. For this, we use a control packet to delay, in case of a contention, the transmission of bursts at the ingress router. We compare the performance of our proposal, by simulation, with an earlier proposed scheme, and show that the proposed OBS-DoD outperforms the earlier scheme in reducing the blocking probability. For simulation, we generated bursty traffic using an M/Pareto distribution.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 18, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off