Delay aware querying with Seaweed

Delay aware querying with Seaweed Large highly distributed data sets are poorly supported by current query technologies. Applications such as endsystem-based network management are characterized by data stored on large numbers of endsystems, with frequent local updates and relatively infrequent global one-shot queries. The challenges are scale (10 3 to 10 9 endsystems) and endsystem unavailability. In such large systems, a significant fraction of endsystems and their data will be unavailable at any given time. Existing methods to provide high data availability despite endsystem unavailability involve centralizing, redistributing or replicating the data. At large scale these methods are not scalable. We advocate a design that trades query delay for completeness, incrementally returning results as endsystems become available. We also introduce the idea of completeness prediction , which provides the user with explicit feedback about this delay/completeness trade-off. Completeness prediction is based on replication of compact data summaries and availability models. This metadata is orders of magnitude smaller than the data. Seaweed is a scalable query infrastructure supporting incremental results, online in-network aggregation and completeness prediction. It is built on a distributed hash table (DHT) but unlike previous DHT based approaches it does not redistribute data across the network. It exploits the DHT infrastructure for failure-resilient metadata replication, query dissemination, and result aggregation. We analytically compare Seaweed’s scalability against other approaches and also evaluate the Seaweed prototype running on a large-scale network simulator driven by real-world traces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Loading next page...
 
/lp/springer_journal/delay-aware-querying-with-seaweed-XDVEi3BI0p
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0060-3
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial