Delay aware querying with Seaweed

Delay aware querying with Seaweed Large highly distributed data sets are poorly supported by current query technologies. Applications such as endsystem-based network management are characterized by data stored on large numbers of endsystems, with frequent local updates and relatively infrequent global one-shot queries. The challenges are scale (10 3 to 10 9 endsystems) and endsystem unavailability. In such large systems, a significant fraction of endsystems and their data will be unavailable at any given time. Existing methods to provide high data availability despite endsystem unavailability involve centralizing, redistributing or replicating the data. At large scale these methods are not scalable. We advocate a design that trades query delay for completeness, incrementally returning results as endsystems become available. We also introduce the idea of completeness prediction , which provides the user with explicit feedback about this delay/completeness trade-off. Completeness prediction is based on replication of compact data summaries and availability models. This metadata is orders of magnitude smaller than the data. Seaweed is a scalable query infrastructure supporting incremental results, online in-network aggregation and completeness prediction. It is built on a distributed hash table (DHT) but unlike previous DHT based approaches it does not redistribute data across the network. It exploits the DHT infrastructure for failure-resilient metadata replication, query dissemination, and result aggregation. We analytically compare Seaweed’s scalability against other approaches and also evaluate the Seaweed prototype running on a large-scale network simulator driven by real-world traces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Loading next page...
 
/lp/springer_journal/delay-aware-querying-with-seaweed-XDVEi3BI0p
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0060-3
Publisher site
See Article on Publisher Site

Abstract

Large highly distributed data sets are poorly supported by current query technologies. Applications such as endsystem-based network management are characterized by data stored on large numbers of endsystems, with frequent local updates and relatively infrequent global one-shot queries. The challenges are scale (10 3 to 10 9 endsystems) and endsystem unavailability. In such large systems, a significant fraction of endsystems and their data will be unavailable at any given time. Existing methods to provide high data availability despite endsystem unavailability involve centralizing, redistributing or replicating the data. At large scale these methods are not scalable. We advocate a design that trades query delay for completeness, incrementally returning results as endsystems become available. We also introduce the idea of completeness prediction , which provides the user with explicit feedback about this delay/completeness trade-off. Completeness prediction is based on replication of compact data summaries and availability models. This metadata is orders of magnitude smaller than the data. Seaweed is a scalable query infrastructure supporting incremental results, online in-network aggregation and completeness prediction. It is built on a distributed hash table (DHT) but unlike previous DHT based approaches it does not redistribute data across the network. It exploits the DHT infrastructure for failure-resilient metadata replication, query dissemination, and result aggregation. We analytically compare Seaweed’s scalability against other approaches and also evaluate the Seaweed prototype running on a large-scale network simulator driven by real-world traces.

Journal

The VLDB JournalSpringer Journals

Published: Mar 1, 2008

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off