Dehydrins associated with the development of frost resistance of Asian white birch

Dehydrins associated with the development of frost resistance of Asian white birch Seasonal changes in the content of dehydrins in Asian white birch (Betula platyphylla Sukacz.) growing under extreme cold conditions of Eastern Siberia (Central Yakutia) were studied for the first time by SDS-PAGE and immunoblotting. Several polypeptides, including putative storage proteins, which content was higher in winter than in other periods, were observed. Intraspecies polymorphism of dehydrins was detected during plant dormancy. The two groups of dehydrins were found: dehydrins with mol wts of 56-73 kD, which were present year-round, and dehydrins with mol wts of 15–21 kD, evidently related to the development of frost resistance because they were absent in summer but present in large amounts in winter. Under low winter temperatures, the highest level of dehydrins coincided with the lowest content of water in buds, which was accompanied by increased plant frost resistance to the highest values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Dehydrins associated with the development of frost resistance of Asian white birch

Loading next page...
 
/lp/springer_journal/dehydrins-associated-with-the-development-of-frost-resistance-of-asian-vQRfiQcJvv
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713060095
Publisher site
See Article on Publisher Site

Abstract

Seasonal changes in the content of dehydrins in Asian white birch (Betula platyphylla Sukacz.) growing under extreme cold conditions of Eastern Siberia (Central Yakutia) were studied for the first time by SDS-PAGE and immunoblotting. Several polypeptides, including putative storage proteins, which content was higher in winter than in other periods, were observed. Intraspecies polymorphism of dehydrins was detected during plant dormancy. The two groups of dehydrins were found: dehydrins with mol wts of 56-73 kD, which were present year-round, and dehydrins with mol wts of 15–21 kD, evidently related to the development of frost resistance because they were absent in summer but present in large amounts in winter. Under low winter temperatures, the highest level of dehydrins coincided with the lowest content of water in buds, which was accompanied by increased plant frost resistance to the highest values.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off