Degradation of 3,4-dichlorobenzotrifluoride by the Fenton-like process using zirconia-coated magnetite magnetic nanoparticles as an effective heterogeneous catalyst

Degradation of 3,4-dichlorobenzotrifluoride by the Fenton-like process using zirconia-coated... In this study, zirconia-coated magnetite magnetic nanoparticles (ZrO2/Fe3O4 MNPs) were prepared, characterized, and used as an effective and reusable heterogeneous catalyst for 3,4-dichlorobenzotrifluoride (3,4-DCBTE) degradation. The catalytic potential of the Fe3O4/ZrO2-H2O2 system for the removal of 3,4-DCBTE was tested in comparison with several other systems, and the effects of various operating parameters, including initial solution pH, catalyst addition, H2O2 concentrations, and reaction temperature, were also evaluated with respect to the degradation efficiency of 3,4-DCBTE. Results showed that the Fe3O4/ZrO2 composite could effectively enhance the oxidation of 3,4-DCBTE by the Fenton-like process, and there might be a synergetic effect in the Fe3O4/ZrO2 composite. When the mass ratio of Fe3O4 and ZrO2 was 1:1, the Fe3O4/ZrO2 exhibited the best catalytic activity, and the catalyst-driven Fenton process achieved high removal of 3,4-DCBTE (98.5%) and total organic carbon (TOC) (52.7%) at the operating conditions: pH 3.0, catalyst 2.0 g/L, H2O2 30 mM, temperature 30 °C, and reaction time 1 h. Furthermore, five successive runs of the Fenton oxidation using the same Fe3O4/ZrO2 composite resulted in the steady removal of 3,4-DCBTE, further confirming the high stability of the catalyst. In addition, the possible catalytic mechanism and degradation pathways of 3,4-DCBTE were also investigated. Environmental Science and Pollution Research Springer Journals

Degradation of 3,4-dichlorobenzotrifluoride by the Fenton-like process using zirconia-coated magnetite magnetic nanoparticles as an effective heterogeneous catalyst

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial