Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh

Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon... This study investigated the degradation of 2-nitrophenol (2-NP) in aqueous solution by dielectric barrier discharge (DBD) system alone and its combination with supported TiO2 photocatalysts. The TiO2 photocatalyst supported on a stainless steel mesh was synthesised using sol–gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide/TiCl4 followed by pyrolysis in the furnace under N2 atmosphere at temperatures of 300, 350, or 400 °C for 3 h holding time. The supported catalysts were characterized for their morphologies, functional groups, crystallinity, surface areas and elemental chemical states by high resolution scanning electron microscope (HRSEM), Fourier transform infrared, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, and X-ray photoelectron spectroscopy. The influence of solution pH on the degradation of 2-NP was investigated. The residual concentration of 2-NP and the intermediate compounds were quantified and identified using high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). The concentration of the dissolved ozone, hydrogen peroxide and hydroxyl radicals generated by the DBD in the presence or absence of a catalyst was monitored using ultraviolet–visible spectroscopy and photoluminescence spectroscopy. The HRSEM, HRTEM, XRD and BET analysis revealed that the optimal thermal conditions to obtain well supported uniformly grown, highly active crystalline TiO2 catalysts with high specific surface area was 350 °C at a 3 h holding time in N2 atmosphere with a flow rate of 20 mL/min. The supporting procedure simultaneously carbon doped the photocatalyst. The DBD system alone without catalysts successfully mineralised 58.6% of 2-NP within 60 min while combined DBD/supported TiO2 nanocrystals achieved 77.5% mineralisation within the same treatment time. The increase in mineralisation rate was attributed to the existence of a synergistic effect between the DBD system and the supported catalysts. 2-NP degradation proceeded via hydroxylation, nitration and denitration using DBD alone and combined DBD/Supported TiO2 photocatalyst. Catechol, hydroquinone, hydroxyl-1,4-benzoquinone, 2-nitrohydroquinone, and 2,4-dinitrophenol were identified as major intermediate products. The order of production of free reactive species by DBD alone and combined DBD with supported photocatalyst was OH° > H2O2 > O3.The results showed that the combined system was more than effective than DBD alone for the degradation of the 2-NP in aqueous solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plasma Chemistry and Plasma Processing Springer Journals

Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh

Loading next page...
 
/lp/springer_journal/degradation-of-2-nitrophenol-by-dielectric-barrier-discharge-system-Bpi8lfDGKf
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Inorganic Chemistry; Classical Mechanics; Characterization and Evaluation of Materials; Mechanical Engineering
ISSN
0272-4324
eISSN
1572-8986
D.O.I.
10.1007/s11090-017-9824-8
Publisher site
See Article on Publisher Site

Abstract

This study investigated the degradation of 2-nitrophenol (2-NP) in aqueous solution by dielectric barrier discharge (DBD) system alone and its combination with supported TiO2 photocatalysts. The TiO2 photocatalyst supported on a stainless steel mesh was synthesised using sol–gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide/TiCl4 followed by pyrolysis in the furnace under N2 atmosphere at temperatures of 300, 350, or 400 °C for 3 h holding time. The supported catalysts were characterized for their morphologies, functional groups, crystallinity, surface areas and elemental chemical states by high resolution scanning electron microscope (HRSEM), Fourier transform infrared, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, and X-ray photoelectron spectroscopy. The influence of solution pH on the degradation of 2-NP was investigated. The residual concentration of 2-NP and the intermediate compounds were quantified and identified using high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). The concentration of the dissolved ozone, hydrogen peroxide and hydroxyl radicals generated by the DBD in the presence or absence of a catalyst was monitored using ultraviolet–visible spectroscopy and photoluminescence spectroscopy. The HRSEM, HRTEM, XRD and BET analysis revealed that the optimal thermal conditions to obtain well supported uniformly grown, highly active crystalline TiO2 catalysts with high specific surface area was 350 °C at a 3 h holding time in N2 atmosphere with a flow rate of 20 mL/min. The supporting procedure simultaneously carbon doped the photocatalyst. The DBD system alone without catalysts successfully mineralised 58.6% of 2-NP within 60 min while combined DBD/supported TiO2 nanocrystals achieved 77.5% mineralisation within the same treatment time. The increase in mineralisation rate was attributed to the existence of a synergistic effect between the DBD system and the supported catalysts. 2-NP degradation proceeded via hydroxylation, nitration and denitration using DBD alone and combined DBD/Supported TiO2 photocatalyst. Catechol, hydroquinone, hydroxyl-1,4-benzoquinone, 2-nitrohydroquinone, and 2,4-dinitrophenol were identified as major intermediate products. The order of production of free reactive species by DBD alone and combined DBD with supported photocatalyst was OH° > H2O2 > O3.The results showed that the combined system was more than effective than DBD alone for the degradation of the 2-NP in aqueous solution.

Journal

Plasma Chemistry and Plasma ProcessingSpringer Journals

Published: May 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off