Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga Chlamydomonas smithii

Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga... Target sequence cleavage is the essential step for intron invasion into an intronless allele. DNA cleavage at a specific site is performed by an endonuclease, termed a homing enzyme, which is encoded by an open reading frame within the intron. The recognition properties of them have only been analyzed in vitro, using purified, recombinant homing enzyme and various mutated DNA substrates, but it is unclear whether the homing enzyme behaves similarly in vivo. To answer this question, we determined the recognition properties of I-CsmI in vivo. I-CsmI is a homing enzyme encoded by the open reading frame of the alpha-group I-intron, located in the mitochondrial apocytochrome b gene of the green alga Chlamydomonas smithii. The in vivo recognition properties of it were determined as the frequency of intron invasion into a mutated target site. For this purpose, we utilized hybrid diploid cells developed by crossing alpha-intron-plus C. smithii to intron-minus C. reinhardtii containing mutated target sequences. The intron invasion frequency was much higher than the expected from the in vitro cleavage frequency of the respective mutated substrates. Even the substrates that had very little cleavage in the in vitro experiment were efficiently invaded in vivo, and were accompanied by a large degree of coconversion. Considering the ease of the homing enzyme invading into various mutated target sequences, we propose that the principle bottleneck for lateral intron transmission is not the sequence specificity of the homing enzyme, but instead is limited by the rare occurrence of inter-specific cell fusion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Degenerated recognition property of a mitochondrial homing enzyme in the unicellular green alga Chlamydomonas smithii

Loading next page...
 
/lp/springer_journal/degenerated-recognition-property-of-a-mitochondrial-homing-enzyme-in-rjStNp0LhV
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9009-y
Publisher site
See Article on Publisher Site

Abstract

Target sequence cleavage is the essential step for intron invasion into an intronless allele. DNA cleavage at a specific site is performed by an endonuclease, termed a homing enzyme, which is encoded by an open reading frame within the intron. The recognition properties of them have only been analyzed in vitro, using purified, recombinant homing enzyme and various mutated DNA substrates, but it is unclear whether the homing enzyme behaves similarly in vivo. To answer this question, we determined the recognition properties of I-CsmI in vivo. I-CsmI is a homing enzyme encoded by the open reading frame of the alpha-group I-intron, located in the mitochondrial apocytochrome b gene of the green alga Chlamydomonas smithii. The in vivo recognition properties of it were determined as the frequency of intron invasion into a mutated target site. For this purpose, we utilized hybrid diploid cells developed by crossing alpha-intron-plus C. smithii to intron-minus C. reinhardtii containing mutated target sequences. The intron invasion frequency was much higher than the expected from the in vitro cleavage frequency of the respective mutated substrates. Even the substrates that had very little cleavage in the in vitro experiment were efficiently invaded in vivo, and were accompanied by a large degree of coconversion. Considering the ease of the homing enzyme invading into various mutated target sequences, we propose that the principle bottleneck for lateral intron transmission is not the sequence specificity of the homing enzyme, but instead is limited by the rare occurrence of inter-specific cell fusion.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 10, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off