Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue

Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis... Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue

Loading next page...
 
/lp/springer_journal/deficiency-in-riboflavin-biosynthesis-affects-tetrapyrrole-VBaZDjeazn
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9846-1
Publisher site
See Article on Publisher Site

Abstract

Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 13, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off