Deep structure, genesis, and seismic activation of the Bureya orogen, Russian Far East

Deep structure, genesis, and seismic activation of the Bureya orogen, Russian Far East The Bureya orogen is a special object among the geodynamic factors determining the high seismicity of the Lower Amur region. Its location and deep structure are studied on the basis of comprehensive geophysical and tectonic data. This orogen is a low-density lithospheric domain expressed by an intensive negative gravity anomaly and Moho sunken down to 40 km depth. Within the limits of this lithospheric structure, contemporary uplifting takes place to form a meridional dome peaking at more than 2000 m altitude. The position of the orogen in the regional structure gives us grounds to think that the Bureya orogen formed in the Paleogene, at the finishing stage of tectonic block movement along the Pacific margin represented by the NE-trending strike-slip faults of the Tang Lu Fault Zone. Compression was concentrated at the triple junction between the Central Asian, Mongolian–Okhotian, and Sikhote Alin tectonic belts. The meridional orientation of the Bureya orogen is associated with the parallel elongated Cenozoic depressions in the region. The united morphotectonic system may have formed resulting from lithospheric folding under horizontal shortening in the Paleocene–Eocene. The wavelength of the Lower Amurian fold system is 250 km, which is consistent with the theoretical estimates and examples of lithospheric folds in other regions. The contemporary activation of the Bureya orogen began in the Miocene, under the effect of the Amurian Plate front moving in the northeastern direction. As a result of shortening, the meridional cluster of weak (M ≥ 2.0) earthquakes formed along the western boundary of the orogenic dome. The most intensive deformations caused another type of seismicity associated with the activation-related uplift of the mentioned orogen. As a result, the so-called Bureya seismic zone formed above the apex of the dome, and it is here that the strongest regional earthquakes (M ≥ 4.5) occur. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Pacific Geology Springer Journals

Deep structure, genesis, and seismic activation of the Bureya orogen, Russian Far East

Loading next page...
 
/lp/springer_journal/deep-structure-genesis-and-seismic-activation-of-the-bureya-orogen-QfEbOCOYIY
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Earth Sciences; Geology
ISSN
1819-7140
eISSN
1819-7159
D.O.I.
10.1134/S1819714017040054
Publisher site
See Article on Publisher Site

Abstract

The Bureya orogen is a special object among the geodynamic factors determining the high seismicity of the Lower Amur region. Its location and deep structure are studied on the basis of comprehensive geophysical and tectonic data. This orogen is a low-density lithospheric domain expressed by an intensive negative gravity anomaly and Moho sunken down to 40 km depth. Within the limits of this lithospheric structure, contemporary uplifting takes place to form a meridional dome peaking at more than 2000 m altitude. The position of the orogen in the regional structure gives us grounds to think that the Bureya orogen formed in the Paleogene, at the finishing stage of tectonic block movement along the Pacific margin represented by the NE-trending strike-slip faults of the Tang Lu Fault Zone. Compression was concentrated at the triple junction between the Central Asian, Mongolian–Okhotian, and Sikhote Alin tectonic belts. The meridional orientation of the Bureya orogen is associated with the parallel elongated Cenozoic depressions in the region. The united morphotectonic system may have formed resulting from lithospheric folding under horizontal shortening in the Paleocene–Eocene. The wavelength of the Lower Amurian fold system is 250 km, which is consistent with the theoretical estimates and examples of lithospheric folds in other regions. The contemporary activation of the Bureya orogen began in the Miocene, under the effect of the Amurian Plate front moving in the northeastern direction. As a result of shortening, the meridional cluster of weak (M ≥ 2.0) earthquakes formed along the western boundary of the orogenic dome. The most intensive deformations caused another type of seismicity associated with the activation-related uplift of the mentioned orogen. As a result, the so-called Bureya seismic zone formed above the apex of the dome, and it is here that the strongest regional earthquakes (M ≥ 4.5) occur.

Journal

Russian Journal of Pacific GeologySpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off