Access the full text.
Sign up today, get DeepDyve free for 14 days.
Object tracking is one of the most important processes for object recognition in the field of computer vision. The aim is to find accurately a target object in every frame of a video sequence. In this paper we propose a combination technique of two algorithms well-known among machine learning practitioners. Firstly, we propose a deep learning approach to automatically extract the features that will be used to represent the original images. Deep learning has been successfully applied in different computer vision applications. Secondly, object tracking can be seen as a ranking problem, since the regions of an image can be ranked according to their level of overlapping with the target object (ground truth in each video frame). During object tracking, the target position and size can change, so the algorithms have to propose several candidate regions in which the target can be found. We propose to use a preference learning approach to build a ranking function which will be used to select the bounding box that ranks higher, i.e., that will likely enclose the target object. The experimental results obtained by our method, called $$ DPL ^{2}$$ D P L 2 (Deep and Preference Learning), are competitive with respect to other algorithms.
Neural Processing Letters – Springer Journals
Published: Oct 23, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.