Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system

Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system Kinetics and dynamics of the reduction of oxygen dissolved in water by metal-ion exchanger nanocomposites differing in the nature (Ag, Cu, Bi, Ni), quantitative content of the introduced metal, and ionic form of the matrix were studied. It is shown that the process of oxygen absorption occurs to the fullest extent with the copper-containing nanocomposite. As the content of the metal increases, the amount of oxygen reduced by a single grain and granular bed grows and reaches the limiting values. It was found on this basis that the material with a copper capacity of 5.0 ± 0.5 mequiv cm−3 in the H+ form is the most efficient for deep removal of molecular oxygen from water. The advisability of using the nanocomposite with the suggested parameters for deep deoxygenation of water in a closed system was confirmed by experiments and calculations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system

Loading next page...
 
/lp/springer_journal/deep-deoxygenation-of-water-with-a-metal-ion-exchanger-nanocomposite-sNUVC3rAQB
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427214110093
Publisher site
See Article on Publisher Site

Abstract

Kinetics and dynamics of the reduction of oxygen dissolved in water by metal-ion exchanger nanocomposites differing in the nature (Ag, Cu, Bi, Ni), quantitative content of the introduced metal, and ionic form of the matrix were studied. It is shown that the process of oxygen absorption occurs to the fullest extent with the copper-containing nanocomposite. As the content of the metal increases, the amount of oxygen reduced by a single grain and granular bed grows and reaches the limiting values. It was found on this basis that the material with a copper capacity of 5.0 ± 0.5 mequiv cm−3 in the H+ form is the most efficient for deep removal of molecular oxygen from water. The advisability of using the nanocomposite with the suggested parameters for deep deoxygenation of water in a closed system was confirmed by experiments and calculations.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Mar 3, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off