Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system

Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system Kinetics and dynamics of the reduction of oxygen dissolved in water by metal-ion exchanger nanocomposites differing in the nature (Ag, Cu, Bi, Ni), quantitative content of the introduced metal, and ionic form of the matrix were studied. It is shown that the process of oxygen absorption occurs to the fullest extent with the copper-containing nanocomposite. As the content of the metal increases, the amount of oxygen reduced by a single grain and granular bed grows and reaches the limiting values. It was found on this basis that the material with a copper capacity of 5.0 ± 0.5 mequiv cm−3 in the H+ form is the most efficient for deep removal of molecular oxygen from water. The advisability of using the nanocomposite with the suggested parameters for deep deoxygenation of water in a closed system was confirmed by experiments and calculations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Deep deoxygenation of water with a metal-ion exchanger nanocomposite in closed system

Loading next page...
 
/lp/springer_journal/deep-deoxygenation-of-water-with-a-metal-ion-exchanger-nanocomposite-sNUVC3rAQB
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427214110093
Publisher site
See Article on Publisher Site

Abstract

Kinetics and dynamics of the reduction of oxygen dissolved in water by metal-ion exchanger nanocomposites differing in the nature (Ag, Cu, Bi, Ni), quantitative content of the introduced metal, and ionic form of the matrix were studied. It is shown that the process of oxygen absorption occurs to the fullest extent with the copper-containing nanocomposite. As the content of the metal increases, the amount of oxygen reduced by a single grain and granular bed grows and reaches the limiting values. It was found on this basis that the material with a copper capacity of 5.0 ± 0.5 mequiv cm−3 in the H+ form is the most efficient for deep removal of molecular oxygen from water. The advisability of using the nanocomposite with the suggested parameters for deep deoxygenation of water in a closed system was confirmed by experiments and calculations.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Mar 3, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off