Decrease in membrane hydraulic conductance of rhizodermal cells under nitrate deficit is related to acidification at the root surface

Decrease in membrane hydraulic conductance of rhizodermal cells under nitrate deficit is related... Barley seedlings (Hordeum vulgare L.) were grown on porous plates submerged in Knop medium at pH 6.0 (control) and in a similar nutrient solution where NO 3 − was replaced with Cl− (treatment); in some treatments Mes buffer (10–20 mM, pH 6.0) was added to the medium. In the absence of buffer, the pH of the medium shifted towards the alkaline region in the presence of NO 3 − and to the acidic region in the presence of Cl−, with the total shift of no more than 0.3 pH units per day. The replacement of NO 3 − with Cl− (in a buffer-free medium) decreased the hydraulic membrane conductance of rhizodermal cells (L p) within a 4-h period; after one day L p settled at approximately 50% of its initial value observed in untreated plants. When the removal of nitrate from the medium was accompanied by the addition of buffer, no changes in L p were observed over a 1-day period. The perfusion of external solution (at a rate of 10 mm/s) made it possible to control pH in the proximity to root surface (pHs). These experiments showed that L p was independent of the surface pH in the pHs range 7.0–5.0, whereas at pHs = 4.5 L p decreased within 15 min to a steady-state level of about 50% of the control value. It is concluded that the reduction of L p under nitrate deficit was related to acidification of the medium near the root surface. The acidic pH shift could be caused by the cessation of proton/nitrate symport and by activation of the plasmalemma H+-pump, related to changes in the cytosolic pH-stat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Decrease in membrane hydraulic conductance of rhizodermal cells under nitrate deficit is related to acidification at the root surface

Loading next page...
 
/lp/springer_journal/decrease-in-membrane-hydraulic-conductance-of-rhizodermal-cells-under-W3FZ0OOTv0
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708050051
Publisher site
See Article on Publisher Site

Abstract

Barley seedlings (Hordeum vulgare L.) were grown on porous plates submerged in Knop medium at pH 6.0 (control) and in a similar nutrient solution where NO 3 − was replaced with Cl− (treatment); in some treatments Mes buffer (10–20 mM, pH 6.0) was added to the medium. In the absence of buffer, the pH of the medium shifted towards the alkaline region in the presence of NO 3 − and to the acidic region in the presence of Cl−, with the total shift of no more than 0.3 pH units per day. The replacement of NO 3 − with Cl− (in a buffer-free medium) decreased the hydraulic membrane conductance of rhizodermal cells (L p) within a 4-h period; after one day L p settled at approximately 50% of its initial value observed in untreated plants. When the removal of nitrate from the medium was accompanied by the addition of buffer, no changes in L p were observed over a 1-day period. The perfusion of external solution (at a rate of 10 mm/s) made it possible to control pH in the proximity to root surface (pHs). These experiments showed that L p was independent of the surface pH in the pHs range 7.0–5.0, whereas at pHs = 4.5 L p decreased within 15 min to a steady-state level of about 50% of the control value. It is concluded that the reduction of L p under nitrate deficit was related to acidification of the medium near the root surface. The acidic pH shift could be caused by the cessation of proton/nitrate symport and by activation of the plasmalemma H+-pump, related to changes in the cytosolic pH-stat.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 30, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off