Decoherence effects in the quantum qubit flip game using Markovian approximation

Decoherence effects in the quantum qubit flip game using Markovian approximation We are considering a quantum version of the penny flip game, whose implementation is influenced by the environment that causes decoherence of the system. In order to model the decoherence, we assume Markovian approximation of open quantum system dynamics. We focus our attention on the phase damping, amplitude damping and amplitude raising channels. Our results show that the Pauli strategy is no longer a Nash equilibrium under decoherence. We attempt to optimize the players’ control pulses in the aforementioned setup to allow them to achieve higher probability of winning the game compared with the Pauli strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Decoherence effects in the quantum qubit flip game using Markovian approximation

Loading next page...
 
/lp/springer_journal/decoherence-effects-in-the-quantum-qubit-flip-game-using-markovian-wierbo48jV
Publisher
Springer Journals
Copyright
Copyright © 2013 by The Author(s)
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0681-y
Publisher site
See Article on Publisher Site

Abstract

We are considering a quantum version of the penny flip game, whose implementation is influenced by the environment that causes decoherence of the system. In order to model the decoherence, we assume Markovian approximation of open quantum system dynamics. We focus our attention on the phase damping, amplitude damping and amplitude raising channels. Our results show that the Pauli strategy is no longer a Nash equilibrium under decoherence. We attempt to optimize the players’ control pulses in the aforementioned setup to allow them to achieve higher probability of winning the game compared with the Pauli strategy.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 17, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off