Decline in regeneration during aging: Appropriateness or stochastics?

Decline in regeneration during aging: Appropriateness or stochastics? There is a standpoint according to which the suppression of the ability of cells in a multicellular organism to proliferate, taking place during aging, as well as the corresponding decline in the regenerative capacities of tissues and organs, is caused by the specialized mechanisms having emerged in the evolution that decrease the risk of malignant transformation and, thereby, provide for protection against cancer. At the same time, various macromolecular defects start to accumulate in senescent cells of the body, which, on the contrary, elevate the probability for malignant transformation of these cells. Thus, according to the mentioned concept, the restriction of cell proliferation is a double-edged sword, which, on the one hand, decreases the probability for malignant tumor development in young age and, on the other hand, limits the lifespan due to accumulation of “spoiled” cells in old age. However, it remains unclear why normal human cells placed under in vitro conditions and thus having no mentioned “anticancer” barriers, which function at the body level only, NEVER undergo spontaneous malignant transformation. In addition, it is unclear how the freshwater hydra escapes both aging and cancer, as it under certain conditions contains no postmitotic and senescent cells at all and under these conditions (excluding the need for sexual reproduction) can live almost indefinitely, possessing a tremendous regenerative potential (a new organism can emerge from even 1/100 part of the old one). Presumably, the restriction of cell proliferation in an aging multicellular organism is not the result of a certain special program. Apparently, there is no program of aging at all, the aging being a “byproduct” of the program of development, whose implementation in higher organisms necessarily requires emergence of cell populations with a very low and even zero proliferative activity, which actually determines the limited ability of the corresponding organs and tissues to regenerate. On the other hand, the populations of highly differentiated cells incapable or poorly capable of reproduction (e.g., neurons, cardiomyocytes, and hepatocytes) are the particular factor that determines the normal functioning of higher animals and humans. Even regeneration of such organs with the help of stem cells may interfere with the necessary links in elaborate systems. The reductionism (“everything is determined by adverse changes in individual cells”), which has recently become widespread in experimental gerontological research, has brought about several model systems for studying the aging mechanisms in isolated cells (Hayflick phenomenon, stationary phase aging model, cellular kinetic model for testing of geroprotectors and geropromoters, etc.). However, it currently seems that data obtained using such models are inappropriate for an automatic extrapolation to the situation in the whole body. Presumably, impairments in regulatory processes functioning at the neurohumoral level are the major players in the mechanisms underlying aging of multicellular organisms rather than a mere accumulation of macromolecular damage in individual cells. It cannot be excluded that a disturbance of such regulation is the particular reason for the abnormal INCREASE in proliferation intensity of some cell populations that are frequently observed in old age and that lead to senile acromegaly and development of numerous benign tumors. It looks like the quality of CONTROL over cells, organs, and tissues becomes poorer with age rather than the quality of the cells themselves, which leads to an increase in the death rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Decline in regeneration during aging: Appropriateness or stochastics?

Loading next page...
 
/lp/springer_journal/decline-in-regeneration-during-aging-appropriateness-or-stochastics-nNhjS8HOPp
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360413060040
Publisher site
See Article on Publisher Site

Abstract

There is a standpoint according to which the suppression of the ability of cells in a multicellular organism to proliferate, taking place during aging, as well as the corresponding decline in the regenerative capacities of tissues and organs, is caused by the specialized mechanisms having emerged in the evolution that decrease the risk of malignant transformation and, thereby, provide for protection against cancer. At the same time, various macromolecular defects start to accumulate in senescent cells of the body, which, on the contrary, elevate the probability for malignant transformation of these cells. Thus, according to the mentioned concept, the restriction of cell proliferation is a double-edged sword, which, on the one hand, decreases the probability for malignant tumor development in young age and, on the other hand, limits the lifespan due to accumulation of “spoiled” cells in old age. However, it remains unclear why normal human cells placed under in vitro conditions and thus having no mentioned “anticancer” barriers, which function at the body level only, NEVER undergo spontaneous malignant transformation. In addition, it is unclear how the freshwater hydra escapes both aging and cancer, as it under certain conditions contains no postmitotic and senescent cells at all and under these conditions (excluding the need for sexual reproduction) can live almost indefinitely, possessing a tremendous regenerative potential (a new organism can emerge from even 1/100 part of the old one). Presumably, the restriction of cell proliferation in an aging multicellular organism is not the result of a certain special program. Apparently, there is no program of aging at all, the aging being a “byproduct” of the program of development, whose implementation in higher organisms necessarily requires emergence of cell populations with a very low and even zero proliferative activity, which actually determines the limited ability of the corresponding organs and tissues to regenerate. On the other hand, the populations of highly differentiated cells incapable or poorly capable of reproduction (e.g., neurons, cardiomyocytes, and hepatocytes) are the particular factor that determines the normal functioning of higher animals and humans. Even regeneration of such organs with the help of stem cells may interfere with the necessary links in elaborate systems. The reductionism (“everything is determined by adverse changes in individual cells”), which has recently become widespread in experimental gerontological research, has brought about several model systems for studying the aging mechanisms in isolated cells (Hayflick phenomenon, stationary phase aging model, cellular kinetic model for testing of geroprotectors and geropromoters, etc.). However, it currently seems that data obtained using such models are inappropriate for an automatic extrapolation to the situation in the whole body. Presumably, impairments in regulatory processes functioning at the neurohumoral level are the major players in the mechanisms underlying aging of multicellular organisms rather than a mere accumulation of macromolecular damage in individual cells. It cannot be excluded that a disturbance of such regulation is the particular reason for the abnormal INCREASE in proliferation intensity of some cell populations that are frequently observed in old age and that lead to senile acromegaly and development of numerous benign tumors. It looks like the quality of CONTROL over cells, organs, and tissues becomes poorer with age rather than the quality of the cells themselves, which leads to an increase in the death rate.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Nov 27, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off