Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing infection cell density in vitro is strongly correlated with viral DNA levels

Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing... The phenomenon of the reduction in the cell-specific yield with increasing infection cell density (ICD), the cell density effect, is one of the main hurdles for improving virus yields in vitro. In the current study, the reduction in cell-specific yields (viral DNA [vDNA], polyhedrin mRNA and occlusion body [OB]) with increasing ICD for Helicoverpa armigera nucleopolyhedrovirus (HearNPV)-infected HzAM1 (Helicoverpa zea) insect cells has been investigated. HzAM1 cells were propagated in Sf900™ III serum-free medium and synchronously infected with wild-type HearNPV at various ICDs of 0.5-5 × 106 cells/mL at an MOI of 5 PFU/cell. Infection was conducted either in the original medium or in fresh medium. As found previously for Sf9 and High Five cells, there were negative correlations between the three key virus infection indicators (vDNA, mRNA and OB) and the peak cell density (PCD). Generally, the yield decline with increasing PCD was most pronounced for OB, followed by mRNA, and was more moderate for vDNA. The decline was significantly reduced, but not totally arrested, when fresh medium was used. There were also strong correlations between OB and mRNA, mRNA and vDNA, and OB and vDNA levels. These results suggest that the reduction in baculovirus yield (OB) at high PCDs is associated with limitations during the upstream processes of replication and transcription together with limitations during protein translation. Furthermore, the peak protein productivity per unit of cell volume in the HzAM1/HearNPV system was shown to be higher than that of the Sf9/rAcMNPV system, but lower than that of the High Five/rAcMNPV system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing infection cell density in vitro is strongly correlated with viral DNA levels

Loading next page...
 
/lp/springer_journal/decline-in-helicoverpa-armigera-nucleopolyhedrovirus-occlusion-body-ChT4XMaHG5
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2478-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial