Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing infection cell density in vitro is strongly correlated with viral DNA levels

Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing... The phenomenon of the reduction in the cell-specific yield with increasing infection cell density (ICD), the cell density effect, is one of the main hurdles for improving virus yields in vitro. In the current study, the reduction in cell-specific yields (viral DNA [vDNA], polyhedrin mRNA and occlusion body [OB]) with increasing ICD for Helicoverpa armigera nucleopolyhedrovirus (HearNPV)-infected HzAM1 (Helicoverpa zea) insect cells has been investigated. HzAM1 cells were propagated in Sf900™ III serum-free medium and synchronously infected with wild-type HearNPV at various ICDs of 0.5-5 × 106 cells/mL at an MOI of 5 PFU/cell. Infection was conducted either in the original medium or in fresh medium. As found previously for Sf9 and High Five cells, there were negative correlations between the three key virus infection indicators (vDNA, mRNA and OB) and the peak cell density (PCD). Generally, the yield decline with increasing PCD was most pronounced for OB, followed by mRNA, and was more moderate for vDNA. The decline was significantly reduced, but not totally arrested, when fresh medium was used. There were also strong correlations between OB and mRNA, mRNA and vDNA, and OB and vDNA levels. These results suggest that the reduction in baculovirus yield (OB) at high PCDs is associated with limitations during the upstream processes of replication and transcription together with limitations during protein translation. Furthermore, the peak protein productivity per unit of cell volume in the HzAM1/HearNPV system was shown to be higher than that of the Sf9/rAcMNPV system, but lower than that of the High Five/rAcMNPV system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing infection cell density in vitro is strongly correlated with viral DNA levels

Loading next page...
 
/lp/springer_journal/decline-in-helicoverpa-armigera-nucleopolyhedrovirus-occlusion-body-ChT4XMaHG5
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2478-z
Publisher site
See Article on Publisher Site

Abstract

The phenomenon of the reduction in the cell-specific yield with increasing infection cell density (ICD), the cell density effect, is one of the main hurdles for improving virus yields in vitro. In the current study, the reduction in cell-specific yields (viral DNA [vDNA], polyhedrin mRNA and occlusion body [OB]) with increasing ICD for Helicoverpa armigera nucleopolyhedrovirus (HearNPV)-infected HzAM1 (Helicoverpa zea) insect cells has been investigated. HzAM1 cells were propagated in Sf900™ III serum-free medium and synchronously infected with wild-type HearNPV at various ICDs of 0.5-5 × 106 cells/mL at an MOI of 5 PFU/cell. Infection was conducted either in the original medium or in fresh medium. As found previously for Sf9 and High Five cells, there were negative correlations between the three key virus infection indicators (vDNA, mRNA and OB) and the peak cell density (PCD). Generally, the yield decline with increasing PCD was most pronounced for OB, followed by mRNA, and was more moderate for vDNA. The decline was significantly reduced, but not totally arrested, when fresh medium was used. There were also strong correlations between OB and mRNA, mRNA and vDNA, and OB and vDNA levels. These results suggest that the reduction in baculovirus yield (OB) at high PCDs is associated with limitations during the upstream processes of replication and transcription together with limitations during protein translation. Furthermore, the peak protein productivity per unit of cell volume in the HzAM1/HearNPV system was shown to be higher than that of the Sf9/rAcMNPV system, but lower than that of the High Five/rAcMNPV system.

Journal

Archives of VirologySpringer Journals

Published: Jun 21, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off