Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana

Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG... ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys85 from the ARID domain and Arg199 & Lys202 from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo. Plant Molecular Biology Springer Journals

Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana

Loading next page...
Springer Netherlands
Copyright © 2016 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial