Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana

Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG... ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys85 from the ARID domain and Arg199 & Lys202 from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/deciphering-the-role-of-the-at-rich-interaction-domain-and-the-hmg-box-Vltox5khXz
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-016-0519-y
Publisher site
See Article on Publisher Site

Abstract

ARID-HMG DNA-binding proteins represent a novel group of HMG-box containing protein family where the AT-rich interaction domain (ARID) is fused with the HMG-box domain in a single polypeptide chain. ARID-HMG proteins are highly plant specific with homologs found both in flowering plants as well as in moss such as Physcomitrella. The expression of these proteins is ubiquitous in plant tissues and primarily localises in the cell nucleus. HMGB proteins are involved in several nuclear processes, but the role of ARID-HMG proteins in plants remains poorly explored. Here, we performed DNA-protein interaction studies with Arabidopsis ARID-HMG protein HMGB11 (At1g55650) to understand the functionality of this protein and its individual domains. DNA binding assays revealed that AtHMGB11 can bind double-stranded DNA with a weaker affinity (Kd = 475 ± 17.9 nM) compared to Arabidopsis HMGB1 protein (Kd = 39.8 ± 2.68 nM). AtHMGB11 also prefers AT-rich DNA as a substrate and shows structural bias for supercoiled DNA. Molecular docking of the DNA-AtHMGB11 complex indicated that the protein interacts with the DNA major groove, mainly through its ARID domain and the junction region connecting the ARID and the HMG-box domain. Also, predicted by the docking model, mutation of Lys85 from the ARID domain and Arg199 & Lys202 from the junction region affects the DNA binding affinity of AtHMGB11. In addition, AtHMGB11 and its truncated form containing the HMG-box domain can not only promote DNA mini-circle formation but are also capable of inducing negative supercoils into relaxed plasmid DNA suggesting the involvement of this protein in several nuclear events. Overall, the study signifies that both the ARID and the HMG-box domain contribute to the optimal functioning of ARID-HMG protein in vivo.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off