Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics

Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits... Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. Mammalian Genome Springer Journals

Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial