Decentralized multi-robot belief space planning in unknown environments via identification and efficient re-evaluation of impacted paths

Decentralized multi-robot belief space planning in unknown environments via identification and... In this paper we develop a new approach for decentralized multi-robot belief space planning in high-dimensional state spaces while operating in unknown environments. State of the art approaches often address related problems within a sampling based motion planning paradigm, where robots generate candidate paths and are to choose the best paths according to a given objective function. As exhaustive evaluation of all candidate path combinations from different robots is computationally intractable, a commonly used (sub-optimal) framework is for each robot, at each time epoch, to evaluate its own candidate paths while only considering the best paths announced by other robots. Yet, even this approach can become computationally expensive, especially for high-dimensional state spaces and for numerous candidate paths that need to be evaluated. In particular, upon an update in the announced path from one of the robots, state of the art approaches re-evaluate belief evolution for all candidate paths and do so from scratch. In this work we develop a framework to identify and efficiently update only those paths that are actually impacted as a result of an update in the announced path. Our approach is based on appropriately propagating belief evolution along impacted paths while employing insights from factor graph and incremental smoothing for efficient inference that is required for evaluating the utility of each impacted path. We demonstrate our approach in a synthetic simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Decentralized multi-robot belief space planning in unknown environments via identification and efficient re-evaluation of impacted paths

Loading next page...
 
/lp/springer_journal/decentralized-multi-robot-belief-space-planning-in-unknown-Z4ajMQ0PKN
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9659-4
Publisher site
See Article on Publisher Site

Abstract

In this paper we develop a new approach for decentralized multi-robot belief space planning in high-dimensional state spaces while operating in unknown environments. State of the art approaches often address related problems within a sampling based motion planning paradigm, where robots generate candidate paths and are to choose the best paths according to a given objective function. As exhaustive evaluation of all candidate path combinations from different robots is computationally intractable, a commonly used (sub-optimal) framework is for each robot, at each time epoch, to evaluate its own candidate paths while only considering the best paths announced by other robots. Yet, even this approach can become computationally expensive, especially for high-dimensional state spaces and for numerous candidate paths that need to be evaluated. In particular, upon an update in the announced path from one of the robots, state of the art approaches re-evaluate belief evolution for all candidate paths and do so from scratch. In this work we develop a framework to identify and efficiently update only those paths that are actually impacted as a result of an update in the announced path. Our approach is based on appropriately propagating belief evolution along impacted paths while employing insights from factor graph and incremental smoothing for efficient inference that is required for evaluating the utility of each impacted path. We demonstrate our approach in a synthetic simulation.

Journal

Autonomous RobotsSpringer Journals

Published: Jul 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off