Decay of passive-scalar fluctuations in slightly stretched grid turbulence

Decay of passive-scalar fluctuations in slightly stretched grid turbulence Isotropic turbulence is closely approximated by stretching a grid flow through a short (1.36:1) secondary contraction. The flow is operated at small values of the Taylor microscale Reynolds number (about 25–55) and is slightly heated just downstream of the grid, so that the temperature serves as a passive scalar and the initial velocity/thermal length-scale ratio is about 1. For the same grid, the contraction reduces the skewness and kurtosis of the thermal fluctuations and their derivative. The thermal fluctuations and their mean dissipation rates follow a power-law rate of decay that depends on the geometry of the grid. Comparison with velocity measurements shows that, for three different grids, the ratio between the temperature and velocity power-law exponents closely matches the velocity/thermal timescale ratio. For the present measurements, the timescale ratio is slightly larger than 1 but does not exceed 1.2, in accordance with the proposal by Corrsin (J Aeronaut Sci 18(6):417–423, 1951b). Experiments in Fluids Springer Journals

Decay of passive-scalar fluctuations in slightly stretched grid turbulence

Loading next page...
Copyright © 2012 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial