De novo assembly and transcriptome analysis of the Pinus densiflora response to pine wilt disease in nature

De novo assembly and transcriptome analysis of the Pinus densiflora response to pine wilt disease... Pine trees have economically and ecologically important roles. However, since the beginning of the twentieth century, a large number of trees have been seriously damaged by pine wilt disease (PWD). Although many studies have been conducted into blocking the spread of PWD, relatively few studies have been performed to examine the transcriptional responses of pine trees to the pine wood nematode (PWN). Here, we performed de novo assembly and analysis of the Pinus densiflora transcriptome by next-generation sequencing (NGS), to identify transcriptional responses that are related to the PWD infection. We identified that 586 of 71,003 assembled unigenes were differentially expressed after PWD infection. Gene ontology analysis showed that biological process terms related to defense responses (response to oxygen containing compound, response to jasmonic acid, response to biotic stimulus, cinnamic acid biosynthetic process, etc.) were significantly enriched in the DEGs after PWD infection. Our results suggested that jasmonic acid signaling is important in controlling defense response against PWD infection and is finely tuned by coordinated expression of positive and negative regulators. These findings contribute to our understanding of the transcriptional responses of P. densiflora to PWN, and could facilitate the development of biomarkers for diagnosis of PWD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Biotechnology Reports Springer Journals

De novo assembly and transcriptome analysis of the Pinus densiflora response to pine wilt disease in nature

Loading next page...
 
/lp/springer_journal/de-novo-assembly-and-transcriptome-analysis-of-the-pinus-densiflora-VMfT0rKjRF
Publisher
Springer Journals
Copyright
Copyright © 2018 by Korean Society for Plant Biotechnology and Springer Japan KK, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Cell Biology; Plant Biochemistry; Biotechnology; Agriculture
ISSN
1863-5466
eISSN
1863-5474
D.O.I.
10.1007/s11816-018-0488-5
Publisher site
See Article on Publisher Site

Abstract

Pine trees have economically and ecologically important roles. However, since the beginning of the twentieth century, a large number of trees have been seriously damaged by pine wilt disease (PWD). Although many studies have been conducted into blocking the spread of PWD, relatively few studies have been performed to examine the transcriptional responses of pine trees to the pine wood nematode (PWN). Here, we performed de novo assembly and analysis of the Pinus densiflora transcriptome by next-generation sequencing (NGS), to identify transcriptional responses that are related to the PWD infection. We identified that 586 of 71,003 assembled unigenes were differentially expressed after PWD infection. Gene ontology analysis showed that biological process terms related to defense responses (response to oxygen containing compound, response to jasmonic acid, response to biotic stimulus, cinnamic acid biosynthetic process, etc.) were significantly enriched in the DEGs after PWD infection. Our results suggested that jasmonic acid signaling is important in controlling defense response against PWD infection and is finely tuned by coordinated expression of positive and negative regulators. These findings contribute to our understanding of the transcriptional responses of P. densiflora to PWN, and could facilitate the development of biomarkers for diagnosis of PWD.

Journal

Plant Biotechnology ReportsSpringer Journals

Published: May 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off