DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production

DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production Dengue virus (DENV) infects approximately 390 million people per year, and each of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) is capable of causing infection. At present, there is no antiviral drug available for the treatment of DENV. Several DExD/H-box helicases have been shown to be involved in the antiviral immune response or viral replication. In the present study, we investigated the role of DDX50 in DENV-2 RNA replication. Our data showed that the level of DENV-2 RNA increased in DDX50 knockdown cells during an early stage of viral infection and decreased in DDX50-overexpressing cells. DDX50, in conjunction with RIG-I and MDA5, upregulated the production of IFN-β in infected cells through an additive effect on the IFN-β promoter. Furthermore, transcription of several IFN-stimulated genes was increased in DDX50-overexpressing cells infected with DENV-2. These results provide evidence that DDX50 negatively regulates DENV-2 replication during the early stages of infection by inducing IFN-β production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production

Loading next page...
 
/lp/springer_journal/ddx50-inhibits-the-replication-of-dengue-virus-2-by-upregulating-ifn-otGtdm09PD
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-017-3250-3
Publisher site
See Article on Publisher Site

Abstract

Dengue virus (DENV) infects approximately 390 million people per year, and each of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) is capable of causing infection. At present, there is no antiviral drug available for the treatment of DENV. Several DExD/H-box helicases have been shown to be involved in the antiviral immune response or viral replication. In the present study, we investigated the role of DDX50 in DENV-2 RNA replication. Our data showed that the level of DENV-2 RNA increased in DDX50 knockdown cells during an early stage of viral infection and decreased in DDX50-overexpressing cells. DDX50, in conjunction with RIG-I and MDA5, upregulated the production of IFN-β in infected cells through an additive effect on the IFN-β promoter. Furthermore, transcription of several IFN-stimulated genes was increased in DDX50-overexpressing cells infected with DENV-2. These results provide evidence that DDX50 negatively regulates DENV-2 replication during the early stages of infection by inducing IFN-β production.

Journal

Archives of VirologySpringer Journals

Published: Feb 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off