DAWN: an efficient framework of DCT for data with error estimation

DAWN: an efficient framework of DCT for data with error estimation On-line analytical processing (OLAP) has become an important component in most data warehouse systems and decision support systems in recent years. In order to deal with the huge amount of data, highly complex queries and increasingly strict response time requirements, approximate query processing has been deemed a viable solution. Most works in this area, however, focus on the space efficiency and are unable to provide quality-guaranteed answers to queries. To remedy this, in this paper, we propose an efficient framework of DCT for dAta With error estimatioN, called DAWN, which focuses on answering range-sum queries from compressed OP-cubes transformed by DCT. Specifically, utilizing the techniques of Geometric series and Euler’s formula, we devise a robust summation function, called the GE function, to answer range queries in constant time, regardless of the number of data cells involved. Note that the GE function can estimate the summation of cosine functions precisely; thus the quality of the answers is superior to that of previous works. Furthermore, an estimator of errors based on the Brown noise assumption (BNA) is devised to provide tight bounds for answering range-sum queries. Our experiment results show that the DAWN framework is scalable to the selectivity of queries and the available storage space. With GE functions and the BNA method, the DAWN framework not only delivers high quality answers for range-sum queries, but also leads to shorter query response time due to its effectiveness in error estimation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

DAWN: an efficient framework of DCT for data with error estimation

Loading next page...
 
/lp/springer_journal/dawn-an-efficient-framework-of-dct-for-data-with-error-estimation-rzSq9iyj3V
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0032-z
Publisher site
See Article on Publisher Site

Abstract

On-line analytical processing (OLAP) has become an important component in most data warehouse systems and decision support systems in recent years. In order to deal with the huge amount of data, highly complex queries and increasingly strict response time requirements, approximate query processing has been deemed a viable solution. Most works in this area, however, focus on the space efficiency and are unable to provide quality-guaranteed answers to queries. To remedy this, in this paper, we propose an efficient framework of DCT for dAta With error estimatioN, called DAWN, which focuses on answering range-sum queries from compressed OP-cubes transformed by DCT. Specifically, utilizing the techniques of Geometric series and Euler’s formula, we devise a robust summation function, called the GE function, to answer range queries in constant time, regardless of the number of data cells involved. Note that the GE function can estimate the summation of cosine functions precisely; thus the quality of the answers is superior to that of previous works. Furthermore, an estimator of errors based on the Brown noise assumption (BNA) is devised to provide tight bounds for answering range-sum queries. Our experiment results show that the DAWN framework is scalable to the selectivity of queries and the available storage space. With GE functions and the BNA method, the DAWN framework not only delivers high quality answers for range-sum queries, but also leads to shorter query response time due to its effectiveness in error estimation.

Journal

The VLDB JournalSpringer Journals

Published: Jul 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off