Data placement in massively distributed environments for fast parallel mining of frequent itemsets

Data placement in massively distributed environments for fast parallel mining of frequent itemsets Frequent itemset mining presents one of the fundamental building blocks in data mining. However, despite the crucial recent advances that have been made in data mining literature, few of both standard and improved solutions scale. This is particularly the case when (1) the quantity of data tends to be very large and/or (2) the minimum support is very low. In this paper, we address the problem of parallel frequent itemset mining (PFIM) in very large databases and study the impact and effectiveness of using specific data placement strategies in a massively distributed environment. By offering a clever data placement and an optimal organization of the extraction algorithms, we show that the arrangement of both the data and the different processes can make the global job either completely inoperative or very effective. In this setting, we propose two different highly scalable, PFIM algorithms, namely P2S (parallel-2-steps) and PATD (parallel absolute top-down). P2S algorithm allows discovering itemsets from large databases in two simple, yet efficient parallel jobs, while PATD renders the mining process of very large databases more simple and compact. Its mining process is made up of only one parallel job, which dramatically reduces the running time, the communication cost and the energy power consumption overhead in a distributed computational platform. Our different proposed approaches have been extensively evaluated on massive real-world data sets. The experimental results confirm the effectiveness and scalability of our proposals by the important scale-up obtained with very low minimum supports compared to other alternatives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

Data placement in massively distributed environments for fast parallel mining of frequent itemsets

Loading next page...
 
/lp/springer_journal/data-placement-in-massively-distributed-environments-for-fast-parallel-tl35rumgMG
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-017-1041-5
Publisher site
See Article on Publisher Site

Abstract

Frequent itemset mining presents one of the fundamental building blocks in data mining. However, despite the crucial recent advances that have been made in data mining literature, few of both standard and improved solutions scale. This is particularly the case when (1) the quantity of data tends to be very large and/or (2) the minimum support is very low. In this paper, we address the problem of parallel frequent itemset mining (PFIM) in very large databases and study the impact and effectiveness of using specific data placement strategies in a massively distributed environment. By offering a clever data placement and an optimal organization of the extraction algorithms, we show that the arrangement of both the data and the different processes can make the global job either completely inoperative or very effective. In this setting, we propose two different highly scalable, PFIM algorithms, namely P2S (parallel-2-steps) and PATD (parallel absolute top-down). P2S algorithm allows discovering itemsets from large databases in two simple, yet efficient parallel jobs, while PATD renders the mining process of very large databases more simple and compact. Its mining process is made up of only one parallel job, which dramatically reduces the running time, the communication cost and the energy power consumption overhead in a distributed computational platform. Our different proposed approaches have been extensively evaluated on massive real-world data sets. The experimental results confirm the effectiveness and scalability of our proposals by the important scale-up obtained with very low minimum supports compared to other alternatives.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Mar 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off