Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments

Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments Efficient data-aware methods in job scheduling, distributed storage management and data management platforms are necessary for successful execution of data-intensive applications. However, research about methods for data-intensive scientific applications are insufficient in large-scale distributed cloud and cluster computing environments and data-aware methods are becoming more complex. In this paper, we propose a Data-Locality Aware Workflow Scheduling (D-LAWS) technique and a locality-aware resource management method for data-intensive scientific workflows in HPC cloud environments. D-LAWS applies data-locality and data transfer time based on network bandwidth to scientific workflow task scheduling and balances resource utilization and parallelism of tasks at the node-level. Our method consolidates VMs and consider task parallelism by data flow during the planning of task executions of a data-intensive scientific workflow. We additionally consider more complex workflow models and data locality pertaining to the placement and transfer of data prior to task executions. We implement and validate the methods based on fairness in cloud environments. Experimental results show that, the proposed methods can improve performance and data-locality of data-intensive workflows in cloud environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Parallel Programming Springer Journals

Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments

Loading next page...
 
/lp/springer_journal/data-locality-aware-scientific-workflow-scheduling-methods-in-hpc-VL0IW6UvbH
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Theory of Computation; Processor Architectures; Software Engineering/Programming and Operating Systems
ISSN
0885-7458
eISSN
1573-7640
D.O.I.
10.1007/s10766-016-0463-0
Publisher site
See Article on Publisher Site

Abstract

Efficient data-aware methods in job scheduling, distributed storage management and data management platforms are necessary for successful execution of data-intensive applications. However, research about methods for data-intensive scientific applications are insufficient in large-scale distributed cloud and cluster computing environments and data-aware methods are becoming more complex. In this paper, we propose a Data-Locality Aware Workflow Scheduling (D-LAWS) technique and a locality-aware resource management method for data-intensive scientific workflows in HPC cloud environments. D-LAWS applies data-locality and data transfer time based on network bandwidth to scientific workflow task scheduling and balances resource utilization and parallelism of tasks at the node-level. Our method consolidates VMs and consider task parallelism by data flow during the planning of task executions of a data-intensive scientific workflow. We additionally consider more complex workflow models and data locality pertaining to the placement and transfer of data prior to task executions. We implement and validate the methods based on fairness in cloud environments. Experimental results show that, the proposed methods can improve performance and data-locality of data-intensive workflows in cloud environments.

Journal

International Journal of Parallel ProgrammingSpringer Journals

Published: Sep 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off