Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments

Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments Efficient data-aware methods in job scheduling, distributed storage management and data management platforms are necessary for successful execution of data-intensive applications. However, research about methods for data-intensive scientific applications are insufficient in large-scale distributed cloud and cluster computing environments and data-aware methods are becoming more complex. In this paper, we propose a Data-Locality Aware Workflow Scheduling (D-LAWS) technique and a locality-aware resource management method for data-intensive scientific workflows in HPC cloud environments. D-LAWS applies data-locality and data transfer time based on network bandwidth to scientific workflow task scheduling and balances resource utilization and parallelism of tasks at the node-level. Our method consolidates VMs and consider task parallelism by data flow during the planning of task executions of a data-intensive scientific workflow. We additionally consider more complex workflow models and data locality pertaining to the placement and transfer of data prior to task executions. We implement and validate the methods based on fairness in cloud environments. Experimental results show that, the proposed methods can improve performance and data-locality of data-intensive workflows in cloud environments. International Journal of Parallel Programming Springer Journals

Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Computer Science; Theory of Computation; Processor Architectures; Software Engineering/Programming and Operating Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial