DANCer: dynamic attributed networks with community structure generation

DANCer: dynamic attributed networks with community structure generation Most networks, such as those generated from social media, tend to evolve gradually with frequent changes in the activity and the interactions of their participants. Furthermore, the communities inside the network can grow, shrink, merge, or split, and the entities can move from one community to another. The aim of community detection methods is precisely to detect the evolution of these communities. However, evaluating these algorithms requires tests on real or artificial networks with verifiable ground truth. Dynamic networks generators have been recently proposed for this task, but most of them consider only the structure of the network, disregarding the characteristics of the nodes. In this paper, we propose a new generator for dynamic attributed networks with community structure that follow the properties of real-world networks. The evolution of the network is performed using two kinds of operations: Micro-operations are applied on the edges and vertices, while macro-operations on the communities. Moreover, the properties of real-world networks such as preferential attachment or homophily are preserved during the evolution of the network, as confirmed by our experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

DANCer: dynamic attributed networks with community structure generation

Loading next page...
 
/lp/springer_journal/dancer-dynamic-attributed-networks-with-community-structure-generation-EnJes9OXWE
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-017-1028-2
Publisher site
See Article on Publisher Site

Abstract

Most networks, such as those generated from social media, tend to evolve gradually with frequent changes in the activity and the interactions of their participants. Furthermore, the communities inside the network can grow, shrink, merge, or split, and the entities can move from one community to another. The aim of community detection methods is precisely to detect the evolution of these communities. However, evaluating these algorithms requires tests on real or artificial networks with verifiable ground truth. Dynamic networks generators have been recently proposed for this task, but most of them consider only the structure of the network, disregarding the characteristics of the nodes. In this paper, we propose a new generator for dynamic attributed networks with community structure that follow the properties of real-world networks. The evolution of the network is performed using two kinds of operations: Micro-operations are applied on the edges and vertices, while macro-operations on the communities. Moreover, the properties of real-world networks such as preferential attachment or homophily are preserved during the evolution of the network, as confirmed by our experiments.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Mar 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off