Cytotoxic behavior of binuclear silver N-heterocyclic carbenes in HCT 116 cells and influence of substitution on cytotoxicity

Cytotoxic behavior of binuclear silver N-heterocyclic carbenes in HCT 116 cells and influence of... Ag (I)-N-heterocyclic carbene (Ag–NHC) complexes (S1–S6) were synthesized from di-cationic ionic liquids (DCILs-1–6) and characterized by NMR, FT-IR, and EI-MS studies, and evaluated for cytotoxicity against human colorectal carcinoma cell line (HCT-116) using methylthiazolyldiphenyl-tetrazolium bromide assay. The DCILs displayed good patterns of cytotoxicity which was improved greatly upon metallation and were found to be in a direct correlation with the increase in the alkyl chain that correlates with lipophilicity. Amongst the Ag–NHCs studied, S1, S5, and S6 have shown 85.95, 99.01 and 99.70% growth inhibition at the concentrations of 120, 120 and 60 µM, respectively. In order to depict the putative mechanism adopted by S6, HCT-116 cells were treated with S6 and stained using acridine orange/ethidium bromide (AO/EtBr), and the results displayed a significant induction of apoptosis in HCT-116 cells as evident from the green-orange fluorescence. Furthermore, DAPI staining confirmed that the S6-treated HCT-116 cells underwent chromatin condensation and DNA fragmentation. Since mitochondria play a prominent role in apoptosis, we further examined the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) formation. Interestingly, the S6-treated HCT-116 cells demonstrated a higher ROS and depolarization of MMP, which suggests that S6 can induce mitochondria-mediated intrinsic apoptosis in cancer cells. Besides these consequences, HCT-116 cells also exhibited a lower level of oxidant defensive protein catalase. Taken altogether, the current study suggests that Ag–NHCs can reduce anti-oxidative protein catalase following an increase in ROS level, thereby triggering apoptosis in cancer cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Cytotoxic behavior of binuclear silver N-heterocyclic carbenes in HCT 116 cells and influence of substitution on cytotoxicity

Loading next page...
 
/lp/springer_journal/cytotoxic-behavior-of-binuclear-silver-n-heterocyclic-carbenes-in-hct-BKK7LyHDym
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-017-2916-5
Publisher site
See Article on Publisher Site

Abstract

Ag (I)-N-heterocyclic carbene (Ag–NHC) complexes (S1–S6) were synthesized from di-cationic ionic liquids (DCILs-1–6) and characterized by NMR, FT-IR, and EI-MS studies, and evaluated for cytotoxicity against human colorectal carcinoma cell line (HCT-116) using methylthiazolyldiphenyl-tetrazolium bromide assay. The DCILs displayed good patterns of cytotoxicity which was improved greatly upon metallation and were found to be in a direct correlation with the increase in the alkyl chain that correlates with lipophilicity. Amongst the Ag–NHCs studied, S1, S5, and S6 have shown 85.95, 99.01 and 99.70% growth inhibition at the concentrations of 120, 120 and 60 µM, respectively. In order to depict the putative mechanism adopted by S6, HCT-116 cells were treated with S6 and stained using acridine orange/ethidium bromide (AO/EtBr), and the results displayed a significant induction of apoptosis in HCT-116 cells as evident from the green-orange fluorescence. Furthermore, DAPI staining confirmed that the S6-treated HCT-116 cells underwent chromatin condensation and DNA fragmentation. Since mitochondria play a prominent role in apoptosis, we further examined the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) formation. Interestingly, the S6-treated HCT-116 cells demonstrated a higher ROS and depolarization of MMP, which suggests that S6 can induce mitochondria-mediated intrinsic apoptosis in cancer cells. Besides these consequences, HCT-116 cells also exhibited a lower level of oxidant defensive protein catalase. Taken altogether, the current study suggests that Ag–NHCs can reduce anti-oxidative protein catalase following an increase in ROS level, thereby triggering apoptosis in cancer cells.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off