Cytoskeleton Modification and Cholesterol Depletion Affect Membrane Properties and Caveolae Positioning of CHO Cells

Cytoskeleton Modification and Cholesterol Depletion Affect Membrane Properties and Caveolae... The formation of protrusions is necessary for numerous biological processes. It involves extension of the plasma membrane, and the force needed for this is provided by the actin cytoskeleton. Tether pulling with optical tweezers can mimic the formation of a protrusion, so we used this method to investigate the effects of modifying not only actin (with latrunculin A) but also microtubules (with nocodazole) and the plasma membrane itself (with methyl-β-cyclodextrin) on the Chinese hamster ovary cell membrane. After these modifications, the membrane reservoir was supposed to redistribute. Caveolae constitute a small part of the reservoir, so the redistribution of caveolar proteins such as caveolin-1 and cavin-1 that represents caveolae per se was assessed. The main findings concerning protrusion force and membrane reservoir availability were as follows: (1) they correlated inversely, (2) their values underwent the greatest change after microtubule disruption, and (3) membrane composition had a major influence on the parameters studied. F-actin disruption and cholesterol depletion decreased, and microtubule disruption increased the amount of the caveolar proteins (caveolae). Caveolae presented just an example of the membrane reservoir, and from our findings, we suppose that the perturbations caused were too large to be related to caveolae redistribution alone. The integrity of the cytoskeleton and plasma membrane composition are important factors in the formation of protrusions and in determining the availability and distribution of the membrane reservoir. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cytoskeleton Modification and Cholesterol Depletion Affect Membrane Properties and Caveolae Positioning of CHO Cells

Loading next page...
 
/lp/springer_journal/cytoskeleton-modification-and-cholesterol-depletion-affect-membrane-eiJzvIuw1c
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9625-9
Publisher site
See Article on Publisher Site

Abstract

The formation of protrusions is necessary for numerous biological processes. It involves extension of the plasma membrane, and the force needed for this is provided by the actin cytoskeleton. Tether pulling with optical tweezers can mimic the formation of a protrusion, so we used this method to investigate the effects of modifying not only actin (with latrunculin A) but also microtubules (with nocodazole) and the plasma membrane itself (with methyl-β-cyclodextrin) on the Chinese hamster ovary cell membrane. After these modifications, the membrane reservoir was supposed to redistribute. Caveolae constitute a small part of the reservoir, so the redistribution of caveolar proteins such as caveolin-1 and cavin-1 that represents caveolae per se was assessed. The main findings concerning protrusion force and membrane reservoir availability were as follows: (1) they correlated inversely, (2) their values underwent the greatest change after microtubule disruption, and (3) membrane composition had a major influence on the parameters studied. F-actin disruption and cholesterol depletion decreased, and microtubule disruption increased the amount of the caveolar proteins (caveolae). Caveolae presented just an example of the membrane reservoir, and from our findings, we suppose that the perturbations caused were too large to be related to caveolae redistribution alone. The integrity of the cytoskeleton and plasma membrane composition are important factors in the formation of protrusions and in determining the availability and distribution of the membrane reservoir.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off