Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III)

Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric... This work reports on a colorimetric platform for determination of chromium ions (Cr3+) and mercury ions (Hg2+) using silver nanoparticles (AgNPs) capped with cytosine triphosphate (CTP). The capped AgNPs were synthesized one-step by reduction of AgNO3 in the presence of CTP. It was found that such AgNPs aggregate in the presence of Cr3+. This results in a decrease in the intensity of the surface plasmon resonance (SPR) band at 390 nm and the formation of a new red-shifted band at 510 nm, and consequently a color change from yellow to red. Different from the Cr3+-induced aggregation of AgNPs, exposure to Hg2+ causes the formation of a mercury layer around the surface of the AgNPs. This, in turn, causes the SPR absorption of the AgNPs to decrease and to undergo a slight blue shift, and this results in a fading of the yellow color. The findings are the basis of developing a new method for quantification of either Cr3+ or Hg2+, with detection limits of 6.25 μM for Cr3+ and of 0.125 μM for Hg2+, respectively. The method was applied to the determination of the two ions in spiked drinking water and lake water samples, and recoveries ranged from 94.5% to 101.3% for Cr3+, and from 96% to 108% for Hg2+, which is satisfactory for quantitative assays performed in water samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III)

Loading next page...
 
/lp/springer_journal/cytosine-triphosphate-capped-silver-nanoparticles-as-a-platform-for-VZCWmbRHSA
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2250-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial