Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III)

Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric... This work reports on a colorimetric platform for determination of chromium ions (Cr3+) and mercury ions (Hg2+) using silver nanoparticles (AgNPs) capped with cytosine triphosphate (CTP). The capped AgNPs were synthesized one-step by reduction of AgNO3 in the presence of CTP. It was found that such AgNPs aggregate in the presence of Cr3+. This results in a decrease in the intensity of the surface plasmon resonance (SPR) band at 390 nm and the formation of a new red-shifted band at 510 nm, and consequently a color change from yellow to red. Different from the Cr3+-induced aggregation of AgNPs, exposure to Hg2+ causes the formation of a mercury layer around the surface of the AgNPs. This, in turn, causes the SPR absorption of the AgNPs to decrease and to undergo a slight blue shift, and this results in a fading of the yellow color. The findings are the basis of developing a new method for quantification of either Cr3+ or Hg2+, with detection limits of 6.25 μM for Cr3+ and of 0.125 μM for Hg2+, respectively. The method was applied to the determination of the two ions in spiked drinking water and lake water samples, and recoveries ranged from 94.5% to 101.3% for Cr3+, and from 96% to 108% for Hg2+, which is satisfactory for quantitative assays performed in water samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Cytosine triphosphate-capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(II) and chromium(III)

Loading next page...
 
/lp/springer_journal/cytosine-triphosphate-capped-silver-nanoparticles-as-a-platform-for-VZCWmbRHSA
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2250-z
Publisher site
See Article on Publisher Site

Abstract

This work reports on a colorimetric platform for determination of chromium ions (Cr3+) and mercury ions (Hg2+) using silver nanoparticles (AgNPs) capped with cytosine triphosphate (CTP). The capped AgNPs were synthesized one-step by reduction of AgNO3 in the presence of CTP. It was found that such AgNPs aggregate in the presence of Cr3+. This results in a decrease in the intensity of the surface plasmon resonance (SPR) band at 390 nm and the formation of a new red-shifted band at 510 nm, and consequently a color change from yellow to red. Different from the Cr3+-induced aggregation of AgNPs, exposure to Hg2+ causes the formation of a mercury layer around the surface of the AgNPs. This, in turn, causes the SPR absorption of the AgNPs to decrease and to undergo a slight blue shift, and this results in a fading of the yellow color. The findings are the basis of developing a new method for quantification of either Cr3+ or Hg2+, with detection limits of 6.25 μM for Cr3+ and of 0.125 μM for Hg2+, respectively. The method was applied to the determination of the two ions in spiked drinking water and lake water samples, and recoveries ranged from 94.5% to 101.3% for Cr3+, and from 96% to 108% for Hg2+, which is satisfactory for quantitative assays performed in water samples.

Journal

Microchimica ActaSpringer Journals

Published: May 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off