Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy

Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new... Sodium valproate (VP) is an important antiepileptic drug, although it can produce deleterious hepatotoxic reactions. Diallyl trisulfide (DATS) is the principle component of garlic oil that possesses antioxidant properties. This study explored the potential hepatoprotective activity of DATS against VP-induced hepatic damage and its underlying mechanisms. In addition, the study assessed the effect of DATS on VP antiepileptic activity. Rats were given DATS once daily at two different doses along with VP for 2 weeks. Results have shown the ability of DATS to counteract VP-induced hepatic damage as it decreased elevated serum transaminases (aspartate aminotransferase and alanine aminotransferase) and alkaline phosphatase. Liver histopathology indicated that DATS preserved the hepatic structural integrity and protected against VP-induced hepatic steatosis and necro-inflammation injury. DATS ameliorated VP-induced oxidative stress and increased the antioxidant capacity of the liver. Immunohistochemical analysis showed activation of nuclear factor kappa-B along with high expression of cyclo-oxygenase-2 (COX-2) upon VP administration. This was accompanied by overproduction of proinflammatory mediators (TNF-α, IL-1β, IL-6). Tracing the apoptotic pathway, VP administration induced marked apoptosis using TUNEL staining. Furthermore, VP-treated animals exhibited high immunoexpression of Bax protein and increased levels of Bax and caspase-3 while level of Bcl2 was significantly decreased in hepatic tissue. However, DATS simultaneous treatment counteracted all of these molecular pathological changes. Using pentylenetetrazole (PTZ)-induced seizures model in mice, the effect of DATS on the anticonvulsant activity of VP was found to be positive, meaning that combination of DATS with VP can confer protection against VP-induced hepatic injurious effects through its antioxidant, antiinflammatory, and antiapoptotic properties without affecting VP antiepileptic activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naunyn-Schmiedeberg's Archives of Pharmacology Springer Journals

Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy

Loading next page...
 
/lp/springer_journal/cytoprotective-effects-of-diallyl-trisulfide-against-valproate-induced-jmv6kKJVfJ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Biomedicine; Pharmacology/Toxicology; Neurosciences
ISSN
0028-1298
eISSN
1432-1912
D.O.I.
10.1007/s00210-017-1393-0
Publisher site
See Article on Publisher Site

Abstract

Sodium valproate (VP) is an important antiepileptic drug, although it can produce deleterious hepatotoxic reactions. Diallyl trisulfide (DATS) is the principle component of garlic oil that possesses antioxidant properties. This study explored the potential hepatoprotective activity of DATS against VP-induced hepatic damage and its underlying mechanisms. In addition, the study assessed the effect of DATS on VP antiepileptic activity. Rats were given DATS once daily at two different doses along with VP for 2 weeks. Results have shown the ability of DATS to counteract VP-induced hepatic damage as it decreased elevated serum transaminases (aspartate aminotransferase and alanine aminotransferase) and alkaline phosphatase. Liver histopathology indicated that DATS preserved the hepatic structural integrity and protected against VP-induced hepatic steatosis and necro-inflammation injury. DATS ameliorated VP-induced oxidative stress and increased the antioxidant capacity of the liver. Immunohistochemical analysis showed activation of nuclear factor kappa-B along with high expression of cyclo-oxygenase-2 (COX-2) upon VP administration. This was accompanied by overproduction of proinflammatory mediators (TNF-α, IL-1β, IL-6). Tracing the apoptotic pathway, VP administration induced marked apoptosis using TUNEL staining. Furthermore, VP-treated animals exhibited high immunoexpression of Bax protein and increased levels of Bax and caspase-3 while level of Bcl2 was significantly decreased in hepatic tissue. However, DATS simultaneous treatment counteracted all of these molecular pathological changes. Using pentylenetetrazole (PTZ)-induced seizures model in mice, the effect of DATS on the anticonvulsant activity of VP was found to be positive, meaning that combination of DATS with VP can confer protection against VP-induced hepatic injurious effects through its antioxidant, antiinflammatory, and antiapoptotic properties without affecting VP antiepileptic activity.

Journal

Naunyn-Schmiedeberg's Archives of PharmacologySpringer Journals

Published: Jun 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off