Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cytophysiological characteristics of Arabidopsis thaliana cultivated cells with disable perception of ethylene signal by the ETR1 receptor

Cytophysiological characteristics of Arabidopsis thaliana cultivated cells with disable... Contradictory data about ethylene influence on cell growth and division prompted us to investigate cytophysiological characteristics of suspension cultures of Arabidopsis thaliana of wild type Col-0 and ert1-1 mutant carrying a point mutation in the site of ethylene binding by the ETR1 receptor. Some cytophysiological characteristics of the etr1-1 cultivated cells differed from those of Col-0: the growth rate of mutant cells was less and cell sizes were smaller, the culture was committed to the formation of tracheary elements (TE), had a pronounced modal class of nuclei (54%) with the amount of DNA 8C and a tendency to expand the ploidy toward 32C. Despite the absence of ethylene perception by the ETR1 receptor, the cell culture of mutant responded to treatment with ethylene by growth acceleration, an increase in cell viability and in the number of cells in the S-phase of the cell cycle. The inhibitor of ethylene binding to receptors, 1-methylcyclopropene, suppressed growth and viability of the cells of both genotypes. In the etr1-1 cell culture, the inhibitor reduced the number of S-phase nuclei and activated TE formation. All data obtained indicate that ethylene perception and transduction of ethylene signal are required for the maintenance of cell viability and active in vitro growth. It is supposed that the functional activity of the ETR1 receptor is necessary for optimal cell expansion, whereas other receptors are responsible for cell proliferation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Cytophysiological characteristics of Arabidopsis thaliana cultivated cells with disable perception of ethylene signal by the ETR1 receptor

Loading next page...
 
/lp/springer_journal/cytophysiological-characteristics-of-arabidopsis-thaliana-cultivated-jrwca4DN1r

References (28)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
DOI
10.1134/S1021443714050070
Publisher site
See Article on Publisher Site

Abstract

Contradictory data about ethylene influence on cell growth and division prompted us to investigate cytophysiological characteristics of suspension cultures of Arabidopsis thaliana of wild type Col-0 and ert1-1 mutant carrying a point mutation in the site of ethylene binding by the ETR1 receptor. Some cytophysiological characteristics of the etr1-1 cultivated cells differed from those of Col-0: the growth rate of mutant cells was less and cell sizes were smaller, the culture was committed to the formation of tracheary elements (TE), had a pronounced modal class of nuclei (54%) with the amount of DNA 8C and a tendency to expand the ploidy toward 32C. Despite the absence of ethylene perception by the ETR1 receptor, the cell culture of mutant responded to treatment with ethylene by growth acceleration, an increase in cell viability and in the number of cells in the S-phase of the cell cycle. The inhibitor of ethylene binding to receptors, 1-methylcyclopropene, suppressed growth and viability of the cells of both genotypes. In the etr1-1 cell culture, the inhibitor reduced the number of S-phase nuclei and activated TE formation. All data obtained indicate that ethylene perception and transduction of ethylene signal are required for the maintenance of cell viability and active in vitro growth. It is supposed that the functional activity of the ETR1 receptor is necessary for optimal cell expansion, whereas other receptors are responsible for cell proliferation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 21, 2014

There are no references for this article.