Cytomixis and its role in the regulation of plant fertility

Cytomixis and its role in the regulation of plant fertility UV and gamma irradiation of barley seedlings induces an increase in the number of various pathologies in the male reproductive system of plants. The majority of cytological abnormalities are rather nonspecific. The main type of the observed pathologies of microsporogenesis is cytomixis, whose activation correlates with a callose hypersecretion in microsporocyte walls. A negative correlation between cytomixis and the sterility of microspores (in the case of gamma irradiation) or the sterility of mature pollen grains (in the case of UV-B irradiation) is revealed. It is supposed that cytomixis represents a kind of a premeiotic cell selection in plants characterized by an intraorganismic genetic heterogeneity (mosaics). The novelty of the idea is that the cytopathology that accompanies cytomixis is considered as a mechanism of the induced death of genetically imbalanced or nonrepairable cells, which is intended to keep the fertility of a male reproductive system. The activation of this mechanism has a threshold character. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Cytomixis and its role in the regulation of plant fertility

Loading next page...
 
/lp/springer_journal/cytomixis-and-its-role-in-the-regulation-of-plant-fertility-RyxNL7MYHN
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360413030028
Publisher site
See Article on Publisher Site

Abstract

UV and gamma irradiation of barley seedlings induces an increase in the number of various pathologies in the male reproductive system of plants. The majority of cytological abnormalities are rather nonspecific. The main type of the observed pathologies of microsporogenesis is cytomixis, whose activation correlates with a callose hypersecretion in microsporocyte walls. A negative correlation between cytomixis and the sterility of microspores (in the case of gamma irradiation) or the sterility of mature pollen grains (in the case of UV-B irradiation) is revealed. It is supposed that cytomixis represents a kind of a premeiotic cell selection in plants characterized by an intraorganismic genetic heterogeneity (mosaics). The novelty of the idea is that the cytopathology that accompanies cytomixis is considered as a mechanism of the induced death of genetically imbalanced or nonrepairable cells, which is intended to keep the fertility of a male reproductive system. The activation of this mechanism has a threshold character.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: May 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial