Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings

Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings Maize (Zea mays L.) seedlings grown in water culture in the presence of zinc and nickel ions were used with an effort to alleviate heavy metal toxicity by treating seeds with thidiazuron and kinetin (synthetic growth regulators with cytokinin-like activity). Heavy metals were shown to decrease germinability of seeds, suppress seedling growth, alter membrane permeability, and inhibit the activity of ascorbate peroxidase. Synthetic cytokinin-like agents alleviated deteriorative effects of heavy metals; the extent of alleviation depended on toxicant species and its concentration. The toxic effect of Zn2+ was effectively relieved by kinetin, whereas the Ni2+ toxicity was preferentially alleviated by thidiazuron. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings

Loading next page...
 
/lp/springer_journal/cytokinin-like-growth-regulators-mitigate-toxic-action-of-zinc-and-5Dq58KyjZD
Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707030132
Publisher site
See Article on Publisher Site

Abstract

Maize (Zea mays L.) seedlings grown in water culture in the presence of zinc and nickel ions were used with an effort to alleviate heavy metal toxicity by treating seeds with thidiazuron and kinetin (synthetic growth regulators with cytokinin-like activity). Heavy metals were shown to decrease germinability of seeds, suppress seedling growth, alter membrane permeability, and inhibit the activity of ascorbate peroxidase. Synthetic cytokinin-like agents alleviated deteriorative effects of heavy metals; the extent of alleviation depended on toxicant species and its concentration. The toxic effect of Zn2+ was effectively relieved by kinetin, whereas the Ni2+ toxicity was preferentially alleviated by thidiazuron.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off