Cyto B dependent and ouabain insensitive Regulatory Volume Decrease in bicellular mouse embryo

Cyto B dependent and ouabain insensitive Regulatory Volume Decrease in bicellular mouse embryo Mouse single-cell embryos exhibit robust Regulatory Volume Decrease (RVD). In what manner the very early mammalian embryo following zygote stage is appreciably altered by the anisotonic extracellular solution is, as yet, totally unclear. Little attention was paid to this direction since there was no way to determine the blastomere volume. This work has served to quantitatively investigate the osmotic response of bicellular mouse embryos employing Laser Scanning Microtomography (LSM) followed with three-dimensional reconstruction (3 DR). We have shown that bicellular mouse embryos in hypotonic Dulbecco’s experience RVD. Embryonic cells subjected to hyposmolar exhibit rapid osmotic swelling followed by gradual shrinking back toward their original volume. The van’ t Hoff law defines swelling phase with the effective hydraulic conductivity of 0.3 micron · min−1 · atm−1. Water release during RVD in bicellular mouse embryos is abolished by Cytochalasin B (Cyto B) and the volume recovery is insensitive to ouabain treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Cyto B dependent and ouabain insensitive Regulatory Volume Decrease in bicellular mouse embryo

Loading next page...
 
/lp/springer_journal/cyto-b-dependent-and-ouabain-insensitive-regulatory-volume-decrease-in-5VCF9QwYuj
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360412020075
Publisher site
See Article on Publisher Site

Abstract

Mouse single-cell embryos exhibit robust Regulatory Volume Decrease (RVD). In what manner the very early mammalian embryo following zygote stage is appreciably altered by the anisotonic extracellular solution is, as yet, totally unclear. Little attention was paid to this direction since there was no way to determine the blastomere volume. This work has served to quantitatively investigate the osmotic response of bicellular mouse embryos employing Laser Scanning Microtomography (LSM) followed with three-dimensional reconstruction (3 DR). We have shown that bicellular mouse embryos in hypotonic Dulbecco’s experience RVD. Embryonic cells subjected to hyposmolar exhibit rapid osmotic swelling followed by gradual shrinking back toward their original volume. The van’ t Hoff law defines swelling phase with the effective hydraulic conductivity of 0.3 micron · min−1 · atm−1. Water release during RVD in bicellular mouse embryos is abolished by Cytochalasin B (Cyto B) and the volume recovery is insensitive to ouabain treatment.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off