Cysteine Mapping in the Ion Selectivity and Toxin Binding Region of the Cardiac Na+ Channel Pore

Cysteine Mapping in the Ion Selectivity and Toxin Binding Region of the Cardiac Na+ Channel Pore Aqueous exposure of critical residues in the selectivity region of voltage gated Na+ channels was studied by cysteine-scanning mutagenesis at three positions in each of the SS2 segments of domains III (D3) and IV (D4) of the human heart Na+ channel. Ionic currents were modified by charged cysteine-specific methanethiosulfonate (MTS) reagents, (2-aminoethyl)methanethiosulfonate (MTSEA+) and (2-sulfonatoethyl)methanethiosulfonate (MTSES−) in all six of the Cys-substituted channels, including Trp → Cys substitutions at homologous positions in D3 and D4 that were predicted in secondary structure models to have buried side chains. Furthermore, in the absence of MTS modification, each of the Cys mutants showed a reduction in tetrodotoxin (TTX) block by a factor >102. Cysteine substitution without MTS modification abolished the alkali metal ion selectivity in K1418C (D3), but not in A1720C (the corresponding position in D4) suggesting that the lysine but not the alanine side chains contribute to selectivity even though both were exposed. Neither position responded to MTSES− suggesting that these residues occupy either a size- or charge-restricted region of the pore. By contrast, MTSES− markedly increased, and MTSEA+ markedly decreased conductance of D1713C (D4) suggesting that the acidic side chain of Asp1713 acts electrostatically in an unrestricted region. These results suggest that Lys1418 lies in a restricted region favorable to cations, whereas Asp1713 is at a more peripheral location in the Na+ channel pore. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cysteine Mapping in the Ion Selectivity and Toxin Binding Region of the Cardiac Na+ Channel Pore

Loading next page...
 
/lp/springer_journal/cysteine-mapping-in-the-ion-selectivity-and-toxin-binding-region-of-fGjIq5B0ma
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900154
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial