CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway

CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a... Nicotine to nornicotine conversion in tobacco (Nicotiana tabacum L.) is regulated by an unstable converter locus which in its activated state gives rise to a high nornicotine, low nicotine phenotype in the senescing leaves. In plants that carry the high nornicotine trait, nicotine conversion is primarily catalyzed by a cytochrome P450 protein, designated CYP82E4 whose transcription is strongly upregulated during leaf senescence. To further investigate the regulation of CYP82E4 expression, we examined the spatiotemporal distribution and the stress- and signaling molecule-elicited expression patterns of CYP82E4 using alkaloid analysis and a fusion construct between the 2.2 kb upstream regulatory region of CYP82E4 and the β-glucurodinase (GUS) gene. Histochemical and fluorometric analyses of GUS expression revealed that the CYP82E4 promoter confers high levels of expression in the senescing leaves and flowers, and in the green stems of young and mature plants, but only very low activity was detected in the roots. In the leaves, GUS activity was strongly correlated with the progression of senescence. Treatments of leaf tissue with various signaling molecules including abscisic acid, ethylene, jasmonic acid, salicylic acid and yeast extract; and stresses, such as drought, wounding and tobacco mosaic virus infection did not enhance nicotine conversion or GUS activity in the green leaves, but an increase in CYP82E4 expression was observed in response to ethylene- or tobacco mosaic virus-induced senescence. These results suggest that the expression of CYP82E4 is senescence-specific in the leaves and the use of the CYP82E4 promoter could provide a valuable tool for regulating gene expression in the senescing leaves. Plant Molecular Biology Springer Journals

CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway

Loading next page...
Springer Netherlands
Copyright © 2008 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial