Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the Drug—The Langmuir Monolayer Studies

Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the... Cyclosporin A (CsA), a hydrophobic cyclic peptide produced by the fungus Tolypocladium inflatum, is well known for its high efficiency as an immunosuppressor for transplanted organs and anti-inflammatory properties; however, it is also active as antiparasitic (antimalarial) drug. Antimalarial mechanism of CsA action lacks a detailed understanding at molecular level. Due to a high lipophilicity of CsA, it is able to interact with lipids of cellular membrane; however, molecular targets of this drug are still unknown. To get a deeper insight into the mode of antimalarial activity of CsA, it is of utmost importance to examine its interactions with membrane components. To reach this goal, the Langmuir monolayer technique, which serves as a very useful, easy to handle and controllable model of biomembranes, has been employed. In this work, the interactions between CsA and main membrane lipids, i.e., cholesterol (Chol), 2-oleoyl-1-palmitoyl-3-phosphocholine (POPC), and sphingomyelin (SM), have been investigated. Attractive interactions are observed only for CsA mixtures with SM, while repulsive forces occur in systems containing remaining membrane lipids. Taking into consideration mutual interactions between membrane lipids (Chol–SM; Chol–POPC and SM–POPC), the behavior of CsA in model erythrocyte membrane of normal and infected cells has been analyzed. Our results prove strong affinity of CsA to SM in membrane environment. Since normal and parasitized erythrocytes differ significantly in the level of SM, this phospholipid may be considered as a molecular target for antimalarial activity of CsA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the Drug—The Langmuir Monolayer Studies

Loading next page...
 
/lp/springer_journal/cyclosporin-a-in-membrane-lipids-environment-implications-for-eVpWXn0eTy
Publisher
Springer US
Copyright
Copyright © 2015 by The Author(s)
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9814-9
Publisher site
See Article on Publisher Site

Abstract

Cyclosporin A (CsA), a hydrophobic cyclic peptide produced by the fungus Tolypocladium inflatum, is well known for its high efficiency as an immunosuppressor for transplanted organs and anti-inflammatory properties; however, it is also active as antiparasitic (antimalarial) drug. Antimalarial mechanism of CsA action lacks a detailed understanding at molecular level. Due to a high lipophilicity of CsA, it is able to interact with lipids of cellular membrane; however, molecular targets of this drug are still unknown. To get a deeper insight into the mode of antimalarial activity of CsA, it is of utmost importance to examine its interactions with membrane components. To reach this goal, the Langmuir monolayer technique, which serves as a very useful, easy to handle and controllable model of biomembranes, has been employed. In this work, the interactions between CsA and main membrane lipids, i.e., cholesterol (Chol), 2-oleoyl-1-palmitoyl-3-phosphocholine (POPC), and sphingomyelin (SM), have been investigated. Attractive interactions are observed only for CsA mixtures with SM, while repulsive forces occur in systems containing remaining membrane lipids. Taking into consideration mutual interactions between membrane lipids (Chol–SM; Chol–POPC and SM–POPC), the behavior of CsA in model erythrocyte membrane of normal and infected cells has been analyzed. Our results prove strong affinity of CsA to SM in membrane environment. Since normal and parasitized erythrocytes differ significantly in the level of SM, this phospholipid may be considered as a molecular target for antimalarial activity of CsA.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 16, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off