Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals

Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals Cellulose nanocrystal (CNC) filled polylactide (PLA) nanocomposites are of interest because both the filler particles and matrix polymer are biodegradable. Foaming with high pressure inert gas is a promising way to open potential applications of this kind of green nanocomposites as lightweight materials. To establish the structure–property relations of this kind of foams is hence of great significance. In this work, PLA/CNC nanocomposites containing three types of CNC particles, including pristine CNC and acetylated ones with lower and moderate degrees of substitution, were foamed using CO2 as the blowing agent for the studies mentioned above. The results show that the presence of all three kinds of CNC particles has large influence on cellular structure and cell morphology, and as a result, affects final mechanical properties of foams. The tensile cycle tests were then performed as an efficient tool to further figure out clear information on the contributions of reinforcement of filler and altered cell structure to the plasticity and elasticity of foams. The obtained results provide useful information on the optimization of cell structure and mechanical properties of PLA foams using small amounts of CNC particles through controlling their surface properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellulose Springer Journals

Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals

Loading next page...
 
/lp/springer_journal/cyclic-tensile-properties-of-the-polylactide-nanocomposite-foams-MWCUug6QQg
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Chemistry; Bioorganic Chemistry; Physical Chemistry; Organic Chemistry; Polymer Sciences; Ceramics, Glass, Composites, Natural Materials; Sustainable Development
ISSN
0969-0239
eISSN
1572-882X
D.O.I.
10.1007/s10570-018-1703-9
Publisher site
See Article on Publisher Site

Abstract

Cellulose nanocrystal (CNC) filled polylactide (PLA) nanocomposites are of interest because both the filler particles and matrix polymer are biodegradable. Foaming with high pressure inert gas is a promising way to open potential applications of this kind of green nanocomposites as lightweight materials. To establish the structure–property relations of this kind of foams is hence of great significance. In this work, PLA/CNC nanocomposites containing three types of CNC particles, including pristine CNC and acetylated ones with lower and moderate degrees of substitution, were foamed using CO2 as the blowing agent for the studies mentioned above. The results show that the presence of all three kinds of CNC particles has large influence on cellular structure and cell morphology, and as a result, affects final mechanical properties of foams. The tensile cycle tests were then performed as an efficient tool to further figure out clear information on the contributions of reinforcement of filler and altered cell structure to the plasticity and elasticity of foams. The obtained results provide useful information on the optimization of cell structure and mechanical properties of PLA foams using small amounts of CNC particles through controlling their surface properties.

Journal

CelluloseSpringer Journals

Published: Feb 7, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial