Cyanotoxin level prediction in a reservoir using gradient boosted regression trees: a case study

Cyanotoxin level prediction in a reservoir using gradient boosted regression trees: a case study Cyanotoxins are a type of cyanobacteria that is poisonous and poses a health threat in waters that could be used for drinking or recreational purposes. Thus, it is necessary to predict their presence to avoid risks. This paper presents a nonparametric machine learning approach using a gradient boosted regression tree model (GBRT) for prediction of cyanotoxin contents from cyanobacterial concentrations determined experimentally in a reservoir located in the north of Spain. GBRT models seek and obtain good predictions in highly nonlinear problems, like the one treated here, where the studied variable presents low concentrations of cyanotoxins mixed with high concentration peaks. Two types of results have been obtained: firstly, the model allows the ranking or the dependent variables according to its importance in the model. Finally, the high performance and the simplicity of the model make the gradient boosted tree method attractive compared to conventional forecasting techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals
Loading next page...
 
/lp/springer_journal/cyanotoxin-level-prediction-in-a-reservoir-using-gradient-boosted-vZxsO65A7t
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2219-4
Publisher site
See Article on Publisher Site

Abstract

Cyanotoxins are a type of cyanobacteria that is poisonous and poses a health threat in waters that could be used for drinking or recreational purposes. Thus, it is necessary to predict their presence to avoid risks. This paper presents a nonparametric machine learning approach using a gradient boosted regression tree model (GBRT) for prediction of cyanotoxin contents from cyanobacterial concentrations determined experimentally in a reservoir located in the north of Spain. GBRT models seek and obtain good predictions in highly nonlinear problems, like the one treated here, where the studied variable presents low concentrations of cyanotoxins mixed with high concentration peaks. Two types of results have been obtained: firstly, the model allows the ranking or the dependent variables according to its importance in the model. Finally, the high performance and the simplicity of the model make the gradient boosted tree method attractive compared to conventional forecasting techniques.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off